Sains Malaysiana 49(8)(2020): 1809-1817

http://dx.doi.org/10.17576/jsm-2020-4908-05

 

Tracing the Carbon Flow in Tropical Watershed using Stable Isotope Technique

(Mengesan Aliran Karbon di dalam Legeh Sungai Tropika Menggunakan Teknik Isotop Stabil)

 

MOHAMAD SHAIFUL MD YUSUFF1, MUHAMMAD IZZUDDIN SYAKIR1,2* & WIDAD FADHULLAH1

 

1Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, USM Pulau Pinang, Malaysia

 

2Centre for Global Sustainability Studies, Universiti Sains Malaysia, 11800 Minden, USM Pulau Pinang, Malaysia

 

Diserahkan: 17 Mac 2019/Diterima: 25 Mac 2020

 

ABSTRACT

Research on catchment area have traditionally involved concentration and flux measurement to better understand weathering, transport and cycling of materials from land to sea. Potentially, modification of terrestrial environment can alter the carbon flow in a catchment. This research is to characterize dissolved inorganic carbon (DIC) in Sungai Kurau and Tasik Bukit Merah. A progressive depletion of (δ¹³C–DIC: -14.20 ± 0.47‰) towards downstream (δ¹³C–DIC: -24.44 ± 0.59‰) is observed. The trend indicates photosynthesis activity at the upper stream system where microbial respiration process is observed to occur at the Tasik Bukit Merah located at downstream area. The dynamic of carbon pathway is highly affected by allochthonous input and autochthonous process in the catchment system. Land use activities within the catchment can disturb the balance between biological and geological processes which control the carbon pool in Kurau catchment.

 

Keywords: Carbon-13; carbon cycle; photosynthesis; respiration; Tasik Bukit Merah

 

ABSTRAK

Penyelidikan di kawasan tadahan secara tradisinya melibatkan kepekatan dan pengukuran fluks untuk lebih memahami luluhawa, pengangkutan dan kitaran bahan dari darat ke laut. Berpotensi, pengubahsuaian persekitaran daratan dapat mengubah aliran karbon dalam kawasan tadahan. Kajian ini adalah untuk mengenal pasti karbon bukan organik yang dilarutkan (DIC) di Sungai Kurau dan Tasik Bukit Merah. Pengurangan progresif (δ¹³C-DIC: -14.20 ± 0.47‰) ke arah hiliran (δ¹³C-DIC: -24.44 ± 0.59‰) diperhatikan. Petunjuk ini menunjukkan aktiviti fotosintesis pada sistem hulu sungai dengan proses respirasi mikrob diperhatikan berlaku di Tasik Bukit Merah yang terletak di kawasan hilir sungai. Dinamik laluan karbon amat dipengaruhi oleh input dan proses autoktonus dalam sistem kawasan tadahan. Aktiviti penggunaan tanah dalam kawasan tadahan boleh mengganggu keseimbangan antara proses biologi dan geologi yang mengawal kelompok karbon di kawasan tadahan Kurau.

 

Kata kunci: Fotosintesis; karbon-13; kitaran karbon; respirasi; Tasik Bukit Merah

 

RUJUKAN

Andriesse, J.P. & Schelhaas, R.M. 1987. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agriculture, Ecosystems & Environment 19(4): 311-332.

Berner, E.K. & Berner, R.A. 2012. Global Environment: Water, Air, and Geochemical Cycles. New Jersey: Princeton University Press.

Cerling, T.E., Solomon, D.K., Quade, J. & Bowman, J.R. 1991. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55(11): 3403-3405.

Clark, I.D. & Fritz, P. 2013. Environmental Isotopes in Hydrogeology. Boca Raton: CRC Press.

Conrad, R. 2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: A review and a proposal. Organic Geochemistry 36(5): 739-752.

DID. 2010. Bukit Merah Lake Brief. NRE Putrajaya: Department of Irrigation and Drainage, Kerian.

Dubois, K.D., Lee, D. & Veizer, J. 2010. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. Journal of Geophysical Research: Biogeosciences 115(G2): 1-8.

Farquhar, G.D., Ehleringer, J.R. & Hubick, K.T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40(1): 503-537.

Holgerson, M.A. & Raymond, P.A. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience 9(3): 222-226.

Hope, D., Billett, M.F. & Cresser, M.S. 1994. A review of the export of carbon in river water: Fluxes and processes. Environmental Pollution 84(3): 301-324.

IAEA. 1993. Reference and intercomparison materials for stable isotope of light element. In Proceeding of a Consultants Meeting held in Vienna. Vienna, p. 165.

Ismail, W.R. & Najib, S.A.M. 2011. Sediment and nutrient balance of Bukit Merah Reservoir, Perak (Malaysia). Lakes & Reservoirs: Science, Policy and Management for Sustainable Use 16(3): 179-184.

Ishak, M.I.S. 2014. A reconnaissance study of water and carbon fluxes in Tropical watersheds of Peninsular Malaysia: Stable isotope constraints. PhD thesis, University of Ottawa (Unpublished).

Karim, A., Dubois, K. & Veizer, J. 2011. Carbon and oxygen dynamics in the Laurentian Great Lakes: Implications for the CO2 flux from terrestrial aquatic systems to the atmosphere. Chemical Geology 281(1-2): 133-141.

Kalff, J. 2002. Limnology: Inland Water Ecosystems. Upper Saddle River, NJ: Prentice Hall.

Lee, K.Y. 2014. Carbon cycling in tropical rivers: A carbon isotope reconnaissance study of the Langat and Kelantan basins. PhD thesis, University of Ottawa (Unpublished).

Mackenzie, F.T. & Lerman, A. 2006. Carbon in the Geobiosphere: Earth's Outer Shell. Netherlands: Springer Science & Business Media.

Meybeck, M. 1993. Riverine transport of atmospheric carbon: Sources, global typology and budget. Water, Air, and Soil Pollution 70(1-4): 443-463.

Park, R. & Epstein, S. 1961. Metabolic fractionation of C13 & C12 in plants. Plant Physiology 36(2): 133-138.

SERCON. 2007. Isotope Ratio Mass Spectrometer (IRMS) Operation Manual. U.K: SERCON Group.

Stelzer, R.S., Heffernan, J. & Likens, G.E. 2003. The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshwater Biology 48(11): 1925-1937.

Stephens, M. & Rose, J. 2005. Modern stable isotopic (δ18O, δ2H, δ13C) variation in terrestrial, fluvial, estuarine and marine waters from north-central Sarawak, Malaysian Borneo. Earth Surface Processes and Landforms 30(7): 901-912.

Striegl, R.G., Kortelainen, P., Chanton, J.P., Wickland, K.P., Bugna, G.C. & Rantakari, M. 2001. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnology and Oceanography 46(4): 941-945.

Talib, S.H.A., Yusoff, M.S., Hasan, Z.A., Ismail, W.R. & Abustan, M.S. 2016. Nutrient concentration distribution in sediment and overlying water at Bukit Merah reservoir, Perak. In The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015). pp. 1-8.

Varlam, C., Stefanescu, I., Varlam, M., Bucur, C., Popescu, I. & Faurescu, I. 2006. Optimization of 14C concentration measurement in aqueous samples using the direct absorption method and LSC. Advances in Liquid Scintillation Spectrometry 49: 423-428.

Wanninkhof, R. 1985. Kinetic fractionation of the carbon isotopes 13C and 12C during transfer of CO2 from air to seawater. Tellus B: Chemical and Physical Meteorology 37(3): 128-135.

Weiss, R.F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2(3): 203-215.

Whiticar, M.J., Faber, E. & Schoell, M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - isotope evidence. Geochimica et Cosmochimica Acta 50(5): 693-709.

Williamson, C.E., Saros, J.E., Vincent, W.F. & Smol, J.P. 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography 54(6part2): 2273-2282.

Zou, J. 2016. Correction: Sources and dynamics of inorganic carbon within the upper reaches of the Xi River basin, Southwest China. PloS ONE 11(12): e0169379.

 

*Pengarang untuk surat-menyurat; email: misyakir@usm.my

 

 

 

sebelumnya