Sains Malaysiana 49(9)(2020): 2073-2081

http://dx.doi.org/10.17576/jsm-2020-4909-05

 

Effects of Sulphuric Acid Concentrations during Solvolysis Process of Carbon Fiber Reinforced Epoxy Composite

(Kesan Kepekatan Asid Sulfurik semasa Proses Solvolisis Komposit Epoksi yang Diperkuat oleh Gentian Karbon)

 

MUHAMMAD FALAQ MUHAMMAD FAISAL1, AZMAN HASSAN1*, KHONG WUI GAN2, MOHD NAZRUL ROSLAN3 & AZRIN HANI ABDUL RASHID3

 

1School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

 

2University of Southampton Malaysia, 79200 Iskandar Puteri, Johor Darul Takzim, Malaysia

 

3Department of Mechanical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 84600 Pagoh, Johor Darul Takzim, Malaysia

 

Diserahkan: 15 Januari 2020/Diterima: 10 Mei 2020

 

ABSTRACT

Developing a cost-effective technique of reclaiming carbon fibers without significantly deteriorating their quality has gained much importance. This paper reports on reclaiming carbon fibers from the carbon fiber reinforced polymer (CFRP) by solvolysis technique using sulphuric acid. The main objective of this work was to determine the lowest sulphuric acid concentration which can remove the epoxy resin from the composites, at room temperature and atmospheric pressure. The sulphuric acid concentrations used ranged from 11 to 18 mol L-1 with 30 min reaction time and 50 mL volume. Thermogravimetric analysis (TGA) showed that the fiber content of the composites is 68% by weight.  From the solvolysis process, mass of decomposed epoxy resin decreased with decreasing acid concentrations. SEM images show that the residual epoxy adhering to the fibers after solvolysis increased with decreasing molarity. Acid concentrations lower than 15 M were found to be not effective in removing the epoxy resin from the carbon fibers. The tensile strength and Young’s modulus of all the reclaimed fibers is marginally lower than the untreated carbon fibers. The tensile strength was found to increase as the acid concentration decreases with fibers in 15 M acid showed the highest tensile strength of 3.43 GPa (99.1% strength retention). Similar trend was also observed for Young’s modulus. The study shows the potential of sulphuric acid to reclaim carbon fiber from the CFRP with 15 M giving the optimum properties in terms of tensile properties retention and epoxy resin decomposition.

 

Keywords: Carbon fiber reinforced polymer; epoxy resin; solvolysis; sulphuric acid; tensile properties

 

ABSTRAK

Penghasilan teknik yang kos efektif untuk memperoleh gentian karbon tanpa mengurangkan kualiti secara ketara telah menjadi semakin penting. Kertas ini melaporkan tentang perolehan gentian karbon daripada gentian karbon diperkuatkan dengan polimer (CFRP) melalui teknik solvolisis menggunakan asid sulfurik. Objektif utama kerja ini adalah untuk menentukan kepekatan asid sulfurik terendah yang boleh menguraikan resin epoksi daripada komposit pada suhu bilik dan tekanan atmosfera. Kepekatan asid sulfurik yang digunakan dalam julat antara 11 dan 18 mol L-1dengan masa tindak balas 30 min dan isi padu 50 mL. Analisis Termogravimetrik (TGA) menunjukkan bahawa kandungan gentian adalah 68% daripada berat komposit. Daripada proses solvolisis, jisim resin epoksi yang terurai berkurangan dengan berkurangnya kepekatan asid. Imej SEM menunjukkan baki epoksi yang melekat pada gentian selepas solvolis bertambah dengan berkurangnya molariti. Pada kepekatan asid kurang daripada 15 M, didapati tidak berkesan dalam menguraikan resin epoksi daripada gentian karbon. Kekuatan tegangan dan modulus Young untuk semua gentian yang diperoleh adalah sedikit rendah daripada gentian karbon yang tidak dirawat.  Kekuatan tegangan menunjukkan peningkatan apabila kepekatan asid berkurang dengan gentian dalam asid 15 M menunjukkan kekuatan tegangan tertinggi iaitu 3.43 GPa (99.1% pengekalan kekuatan). Aliran sama ditunjukkan untuk modulus Young. Kajian ini menunjukkan asid sulfurik berpotensi untuk memperoleh gentian karbon daripada CFRP dengan 15 M memberikan keadaan paling optimum daripada segi pengekalan kekuatan tegangan dan pemisahan resin epoksi.

 

Kata kunci: Asid sulfurik; polimer diperkuat gentian karbon dikitar semula; resin epoksi; sifat mekanikal; solvolis

 

RUJUKAN

Asmatulu, E., Twomey, J. & Overcash, M. 2014. Recycling of fiber-reinforced composites and direct structural composite recycling concept. Journal of Composite Materials 48(5): 593-608.

Bai, Y., Wang, Z. & Feng, L. 2010a. Chemical recycling of carbon fibres reinforced epoxy resin composites in oxygen in supercritical water. Materials and Design 31: 999-1002.

Bai, Y., Wang, Z. & Feng, L. 2010b. Interface properties of carbon fiber/epoxy resin composite improved by supercritical water and oxygen in supercritical water. Materials and Design 3: 1613-1616.

Cunliffe, A.M., Jones, N. & Williams, P.T. 2003. Recycling of fibre-reinforced polymeric waste by pyrolysis: Thermo-gravimetric and bench-scale investigations. Journal of Analytical and Applied Pyrolysis 70: 315-338.

Dang, W., Kubouchi, M., Yamamoto, S., Sembokuya, H. & Tsuda, K. 2002. An approach to chemical recycling of epoxy resin with amine using nitric acid. Polymer 43: 2953-2958.

Das, M. & Varughese, S. 2016. A novel sonochemical approach for enhanced recovery of carbon fiber from CFRP waste using mild acid-peroxide mixture. ACS Sustainable Chemistry & Engineering 4: 2080-2087.

Deng, J., Xu, L., Zhang, L., Peng, J., Guo, S., Liu, J. & Koppala, S. 2019. Recycling of carbon fibers from CFRP waste by microwave thermolysis. Processes 7(207): 1-12.

Holmes, M. 2014. Global carbon fibre market remains on upward trend. Reinforced Plastics 58(6): 38-45.

Jiang, G. & Pickering, S.J. 2016. Structure-property relationship of recycled carbon fibres revealed by pyrolysis recycling process. Journal of Material Science 51: 1949-1958.

Jiang, J., Deng, G., Chen, X., Gao, X., Guo, Q., Xu, C. & Zhou, L. 2017. On the successful chemical recycling of carbon fiber/epoxy resin composites under mild condition. Composites Science and Technology 151: 243-251.

Jiang, G., Pickering, S.J., Lester, E.H., Turner, T.A., Wong, K.H. & Warrior, N.A. 2009 Characterisation of carbon fibres/epoxy resin composites using supercritical n-propanol. Composites Science and Technology 69: 192-198.

Ismail, N.H., Mohammad, M.H.B. & Jaafar, M. 2018. Multi-walled carbon nanotubes/woven kenaf fabric-reinforced epoxy laminated composites. Sains Malaysiana 47(3): 563-569.

Keith, M.J., Ingram, A. & Leeke, G.A. 2018. Recycling carbon fibre with an acetone/water solvent and zinc chloride catalyst: Resin degradation and fibre characterization. In SAMPE Europe Conference. Southampton, UK. 11‐13 September.

Kouparitsas, C.E., Kartalis, C.N., Varelidis, P.C., Tsenoglou, C.J. & Papaspyrides, C.D. 2002. Recycling of the fibrous fraction of reinforced thermoset composites. Polymer Composites 23: 682-689.

Li, X., Bai, R. & McKechnie, J. 2016. Environmental and financial performance of mechanical recycling of carbon fibre reinforced polymers and comparison with conventional disposal routes. Journal of Cleaner Production 127: 451-460.

Meng, F., McKechnie, J., Turner, T.A. & Pickering, S.J. 2017. Energy and environmental reuse of fluidized bed recycled carbon fibres. Composites: Part A 100: 206-214.

Mohd Ishak, Z.A. 2019. Recycled carbon fibre: A promising future. eXPRESS Polymer Letters 13(12): 1026-1026.

Oliveux, G., Dandy, L.O. & Leeke, G.A. 2015. Current status of recycling carbon fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science 72: 61-99.

Onwudili, J.A., Insura, N. & Williams, P.T. 2013. Autoclave pyrolysis of carbon reinforced composite plastic waste from carbon fibre and chemicals recovery. Journal of the Energy Institute 86(4): 227-232.

Palmer, J., Savage, L., Ghita, O.R. & Evans, K.E. 2010. Sheet moulding compound (SMC) from carbon fibre recyclate. Composites: Part A 41: 1232-1237.

Palmer, J., Ghita, O.R., Savage, L. & Evans, K.E. 2009. Successful closed-loop recycling of thermoset composites. Composites: Part A 40: 490-498.

Pickering, S.J. 2006. Recycling technologies for thermoset composite materials-current status. Composites: Part A 37: 1206-1215.

Princaud, M., Aymonier, C., Loppinet-Serani, A., Perry, N. & Sonnemann, G. 2014. Environmental feasibility of the recycling of carbon fibers from CFRPs by solvolysis using supercritical water. Sustainable Chemistry & Engineering 2: 1498-1502.

Rybicka, J., Tiwari, A. & Leeke, G.A. 2016. Technology readiness level assessment of composites recycling technologies. Journal of Cleaner Production 112: 1001-1012.

Shibata, K., Nakagawa, M., Quitain, A. & Sasaki, M. 2013. CFRP recycling using depolymerization of acid anhydride cured epoxy resin. In 9th International Conference on Composite Materials, Proceedings. pp. 8511-8518.

Su, D.H. 2014. Application of fiber reinforced composites for sports instruments. Applied Mechanics and Materials 687-691(2014): 4256-4259.

Vazquez-Moreno, J.M., Sanchez-Hidalgo, R., Sanz-Horcajo, E., Vina, J., Verdejo, R. & Lopez-Manchado, M.A. 2019. Preparation and mechanical properties of grapheme/carbon fiber-reinforced hierarchical polymer composites. Journal of Composite Science 3(30): 1-8.

Wang, Y., Cui, X., Ge, H., Yang, Y., Wang, Y., Zhang, C., Li, J., Deng, T., Qin, Z. & Hou, X. 2015. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon-nitrogen bond. ACS Sustainable Chemistry & Engineering3: 3332-3337.

Witik, R.A., Teuscher, R., Michaud, V., Ludwig, C. & Manson, J.E. 2013. Carbon fibre reinforced composite waste: An environment assessment of recycling, energy recovery and landfilling. Composites: Part A 49: 89-99.

Yan, H., Lu, C., Jing, D. & Hou, X. 2014. Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites. Chinese Journal of Polymer Science 32: 1550-1563.

Yang, P., Zhou, Q., Li, X.Y., Yang, K.K. & Wang, Y.Z. 2014. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system. Journal of Reinforced Plastics & Composites 33(22): 2106-2114.

Zhao, J., Li, G., Wang, Z. & Zhao, X.L. 2019. Fatigue behavior of concrete beams reinforced with glass and carbon-fiber reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures. Composite Structures 229(2019): 1-18.

 

*Pengarang untuk surat-menyurat; email: azmanh@cheme.utm.my

   

 

 

sebelumnya