Sains Malaysiana 49(9)(2020): 2073-2081
http://dx.doi.org/10.17576/jsm-2020-4909-05
Effects
of Sulphuric Acid Concentrations during Solvolysis Process of Carbon Fiber
Reinforced Epoxy Composite
(Kesan Kepekatan Asid Sulfurik semasa Proses Solvolisis Komposit Epoksi yang Diperkuat oleh Gentian
Karbon)
MUHAMMAD
FALAQ MUHAMMAD FAISAL1, AZMAN HASSAN1*, KHONG WUI GAN2,
MOHD NAZRUL ROSLAN3 & AZRIN HANI ABDUL RASHID3
1School of Chemical and
Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310
UTM Skudai, Johor Darul Takzim, Malaysia
2University of Southampton
Malaysia, 79200 Iskandar Puteri, Johor Darul Takzim, Malaysia
3Department of Mechanical
Engineering Technology, Faculty of Engineering Technology, Universiti Tun
Hussein Onn Malaysia, 84600 Pagoh, Johor Darul Takzim, Malaysia
Diserahkan: 15
Januari 2020/Diterima: 10 Mei
2020
ABSTRACT
Developing
a cost-effective technique of reclaiming carbon fibers without significantly
deteriorating their quality has gained much importance. This paper reports on
reclaiming carbon fibers from the carbon fiber reinforced polymer (CFRP) by
solvolysis technique using sulphuric acid. The main objective of this work was to determine the lowest sulphuric
acid concentration which can remove the epoxy resin from the composites, at
room temperature and atmospheric pressure. The sulphuric acid concentrations
used ranged from 11 to 18 mol L-1 with 30 min reaction time and 50
mL volume. Thermogravimetric analysis (TGA) showed that the fiber content of
the composites is 68% by weight. From
the solvolysis process, mass of decomposed epoxy resin decreased with decreasing
acid concentrations. SEM images show that the residual epoxy adhering to the fibers after
solvolysis increased with decreasing molarity. Acid concentrations lower than
15 M were found to be not effective in removing the epoxy resin from the carbon
fibers. The tensile strength and Young’s modulus of all the reclaimed fibers is
marginally lower than the untreated carbon fibers. The tensile strength was
found to increase as the acid concentration decreases with fibers in 15 M acid
showed the highest tensile strength of 3.43 GPa (99.1% strength retention).
Similar trend was also observed for Young’s modulus. The study shows the
potential of sulphuric acid to reclaim carbon fiber from the CFRP with 15 M
giving the optimum properties in terms of tensile properties retention and
epoxy resin decomposition.
Keywords:
Carbon fiber reinforced polymer; epoxy resin; solvolysis; sulphuric acid;
tensile properties
ABSTRAK
Penghasilan teknik yang kos efektif untuk memperoleh
gentian karbon tanpa mengurangkan kualiti secara ketara telah menjadi semakin
penting. Kertas ini melaporkan tentang perolehan gentian karbon daripada gentian karbon
diperkuatkan dengan polimer (CFRP) melalui teknik solvolisis menggunakan asid
sulfurik. Objektif utama kerja ini adalah untuk menentukan kepekatan asid
sulfurik terendah yang boleh menguraikan resin epoksi daripada komposit pada
suhu bilik dan tekanan atmosfera. Kepekatan asid sulfurik yang digunakan dalam
julat antara 11 dan 18 mol L-1dengan masa
tindak balas 30 min dan isi padu 50 mL. Analisis Termogravimetrik (TGA) menunjukkan bahawa kandungan
gentian adalah 68% daripada berat komposit. Daripada proses solvolisis, jisim
resin epoksi yang terurai berkurangan dengan berkurangnya kepekatan asid. Imej
SEM menunjukkan baki epoksi yang melekat pada gentian selepas solvolis bertambah dengan berkurangnya molariti.
Pada kepekatan asid kurang daripada 15 M, didapati tidak berkesan dalam
menguraikan resin epoksi daripada gentian karbon. Kekuatan tegangan dan modulus Young untuk semua gentian yang
diperoleh adalah sedikit rendah daripada gentian karbon yang tidak
dirawat. Kekuatan tegangan menunjukkan
peningkatan apabila kepekatan asid berkurang dengan gentian dalam asid 15 M menunjukkan kekuatan tegangan tertinggi
iaitu 3.43 GPa (99.1% pengekalan kekuatan). Aliran sama ditunjukkan untuk
modulus Young. Kajian ini menunjukkan asid sulfurik berpotensi untuk memperoleh
gentian karbon daripada CFRP dengan 15 M memberikan keadaan paling optimum daripada segi pengekalan
kekuatan tegangan dan pemisahan resin epoksi.
Kata kunci: Asid
sulfurik; polimer diperkuat gentian karbon dikitar semula; resin epoksi; sifat
mekanikal; solvolis
RUJUKAN
Asmatulu, E., Twomey, J.
& Overcash, M. 2014. Recycling of fiber-reinforced composites and direct
structural composite recycling concept. Journal
of Composite Materials 48(5): 593-608.
Bai, Y., Wang, Z. &
Feng, L. 2010a. Chemical
recycling of carbon fibres reinforced epoxy resin composites in oxygen in
supercritical water. Materials and Design 31: 999-1002.
Bai, Y., Wang, Z. &
Feng, L. 2010b. Interface
properties of carbon fiber/epoxy resin composite improved by supercritical
water and oxygen in supercritical water. Materials
and Design 3: 1613-1616.
Cunliffe, A.M., Jones, N. & Williams,
P.T. 2003. Recycling of fibre-reinforced polymeric waste by pyrolysis: Thermo-gravimetric and bench-scale
investigations. Journal of Analytical and Applied Pyrolysis 70: 315-338.
Dang, W., Kubouchi, M., Yamamoto, S.,
Sembokuya, H. & Tsuda, K. 2002. An approach to chemical recycling of epoxy
resin with amine using nitric acid. Polymer 43: 2953-2958.
Das, M. & Varughese, S. 2016. A novel
sonochemical approach for enhanced recovery of carbon fiber from CFRP waste
using mild acid-peroxide mixture. ACS
Sustainable Chemistry & Engineering 4: 2080-2087.
Deng, J., Xu, L., Zhang, L., Peng, J., Guo,
S., Liu, J. & Koppala, S. 2019. Recycling of carbon fibers from CFRP waste
by microwave thermolysis. Processes 7(207): 1-12.
Holmes, M. 2014. Global carbon fibre market
remains on upward trend. Reinforced
Plastics 58(6): 38-45.
Jiang, G. & Pickering, S.J. 2016.
Structure-property relationship of recycled carbon fibres revealed by pyrolysis
recycling process. Journal of Material
Science 51: 1949-1958.
Jiang, J., Deng, G., Chen, X., Gao, X.,
Guo, Q., Xu, C. & Zhou, L. 2017. On the successful chemical recycling of
carbon fiber/epoxy resin composites under mild condition. Composites Science and Technology 151: 243-251.
Jiang, G., Pickering, S.J., Lester, E.H., Turner,
T.A., Wong, K.H. & Warrior, N.A. 2009 Characterisation of carbon
fibres/epoxy resin composites using supercritical n-propanol. Composites
Science and Technology 69: 192-198.
Ismail, N.H., Mohammad, M.H.B. & Jaafar, M. 2018.
Multi-walled carbon nanotubes/woven kenaf fabric-reinforced epoxy laminated
composites. Sains Malaysiana 47(3):
563-569.
Keith, M.J., Ingram, A. & Leeke, G.A. 2018. Recycling
carbon fibre with an acetone/water solvent and zinc chloride catalyst: Resin degradation and fibre
characterization. In SAMPE Europe Conference. Southampton, UK. 11‐13 September.
Kouparitsas, C.E., Kartalis, C.N., Varelidis, P.C.,
Tsenoglou, C.J. & Papaspyrides, C.D. 2002. Recycling of the fibrous
fraction of reinforced thermoset composites. Polymer Composites 23: 682-689.
Li, X., Bai, R. & McKechnie, J. 2016.
Environmental and financial performance of mechanical recycling of carbon fibre
reinforced polymers and comparison with conventional disposal routes. Journal
of Cleaner Production 127: 451-460.
Meng, F., McKechnie, J., Turner, T.A. & Pickering,
S.J. 2017. Energy and environmental reuse of fluidized bed recycled carbon
fibres. Composites: Part A 100:
206-214.
Mohd Ishak, Z.A. 2019. Recycled carbon fibre: A promising future. eXPRESS Polymer Letters 13(12): 1026-1026.
Oliveux, G., Dandy, L.O. & Leeke, G.A. 2015.
Current status of recycling carbon fibre reinforced polymers: Review of technologies, reuse and resulting
properties. Progress in Materials Science 72: 61-99.
Onwudili, J.A., Insura, N. & Williams, P.T. 2013. Autoclave pyrolysis of
carbon reinforced composite plastic waste from carbon fibre and chemicals
recovery. Journal of the Energy Institute 86(4): 227-232.
Palmer, J., Savage, L., Ghita, O.R. & Evans, K.E.
2010. Sheet moulding compound (SMC) from carbon fibre recyclate. Composites: Part A 41: 1232-1237.
Palmer, J., Ghita, O.R., Savage, L. & Evans, K.E.
2009. Successful closed-loop recycling of thermoset composites. Composites: Part A 40: 490-498.
Pickering, S.J. 2006. Recycling technologies for
thermoset composite materials-current
status. Composites: Part A 37: 1206-1215.
Princaud, M., Aymonier, C.,
Loppinet-Serani, A., Perry, N. & Sonnemann, G. 2014. Environmental feasibility of the recycling
of carbon fibers from CFRPs by solvolysis using supercritical water. Sustainable Chemistry & Engineering 2: 1498-1502.
Rybicka, J., Tiwari, A. & Leeke, G.A. 2016.
Technology readiness level assessment of composites recycling technologies. Journal of Cleaner Production 112:
1001-1012.
Shibata, K., Nakagawa, M., Quitain, A. & Sasaki,
M. 2013. CFRP recycling using depolymerization of acid anhydride cured epoxy
resin. In 9th International Conference on Composite Materials, Proceedings. pp. 8511-8518.
Su, D.H. 2014. Application of fiber reinforced
composites for sports instruments. Applied
Mechanics and Materials 687-691(2014): 4256-4259.
Vazquez-Moreno, J.M., Sanchez-Hidalgo, R., Sanz-Horcajo,
E., Vina, J., Verdejo, R. & Lopez-Manchado, M.A. 2019. Preparation and
mechanical properties of grapheme/carbon fiber-reinforced hierarchical polymer
composites. Journal of Composite Science 3(30): 1-8.
Wang, Y., Cui, X., Ge, H., Yang,
Y., Wang, Y., Zhang, C., Li, J., Deng, T., Qin, Z. & Hou, X. 2015. Chemical recycling of carbon fiber
reinforced epoxy resin composites via selective cleavage of the carbon-nitrogen
bond. ACS Sustainable
Chemistry & Engineering3: 3332-3337.
Witik, R.A., Teuscher, R., Michaud,
V., Ludwig, C. & Manson, J.E. 2013. Carbon fibre reinforced composite waste: An environment assessment of recycling,
energy recovery and landfilling. Composites:
Part A 49: 89-99.
Yan, H., Lu, C., Jing, D. & Hou, X. 2014. Chemical
degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for
recycling carbon fiber from composites. Chinese
Journal of Polymer Science 32: 1550-1563.
Yang, P., Zhou, Q., Li, X.Y.,
Yang, K.K. & Wang, Y.Z. 2014. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene
glycol/NaOH system. Journal of Reinforced
Plastics & Composites 33(22): 2106-2114.
Zhao, J., Li, G., Wang, Z. & Zhao, X.L. 2019.
Fatigue behavior of concrete beams reinforced with glass and carbon-fiber
reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures. Composite Structures 229(2019): 1-18.
*Pengarang untuk surat-menyurat;
email: azmanh@cheme.utm.my
|