Sains Malaysiana 49(9)(2020): 2197-2210
http://dx.doi.org/10.17576/jsm-2020-4909-17
Improvement
of Fatigue Resistance of Epoxy Composite with Heterogeneous Solid-State
Self-Healing System
(Peningkatan
Ketahanan Kelesuan Komposit Epoksi dengan Sistem Penyembuhan Diri Keadaan
Pepejal Heterogen)
MOHD SUZEREN MD JAMIL*, WAN NAQIUDDIN WAN ZULRUSHDI
& NOOR NABILAH MUHAMAD
Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 15 Oktober
2019/Diterima: 8 Mei 2020
Abstract
The purpose of
this research study was to investigate the improvement in fatigue life
parameters and static strength residues of heterogeneous solid-state of the
self-healing resin after exposure to fatigue cycles. The healing system is
based on the thermoplastic-thermosetting semi-interpenetrating network. This
system employs a thermosetting resin, into which a linear thermoplastic of
poly(vinyl chloride) (PVC), poly(vinyl alcohol) (PVA), polyethylene (PE) or
polypropylene (PP) as is dissolved. Upon heating a fractured
resin system at a specific temperature, the heterogeneous resin
blend undergoes a volumetric thermal expansion of healing agent within the
matrix resin for crack recovery. Under the Compact tension (CT) test and within
the third healing cycle, the modified resin with PVC has the average percentage
recovery of 75-48% compared with PP, PE, or PVA at around 67-31%, respectively.
The modified epoxy fatigue life with PVC and PP was shown to be increased by a
factor of about 1.5 and 1.1 times after
healing periods. The healable (modified) resin also showed an improvement in
residual strength than the control resin after exposure to fatigue cycles. The
fatigue-healing process was proven through the surface and cross-section resin
morphology analysis using a microscopy optic and scanning electron microscope
(SEM). On the whole, the heterogeneous solid-state self-healing system has
proven to be effective in obstructing fatigue crack propagation, effectively
improved the self-healing polymeric material to achieve higher life extension.
Keywords: Fatigue life; healing agent;
heterogeneous; residual strength; self-healing resin
ABSTRAK
Fokus penyelidikan ini adalah
untuk mengkaji peningkatan dalam parameter jangka hayat kelesuan dan residu
kekuatan statik bagi swapemulihan resin heterogen dalam keadaan pepejal selepas
terdedah kepada kitaran muatan lesu. Sistem pemulihan ini adalah berdasarkan
kepada penembusan/peresapan sebahagian rangkaian termoplastik-termoset. Sistem
ini menggunakan resin termoset yang dilarutkan bersama termoplastik poli(vinil
klorida) (PVC), poli(vinil alkohol) (PVA), polietilena (PE) atau polipropilena
(PP). Apabila sistem resin yang mengalami keretakan dipanaskan pada suhu
tertentu, campuran resin heterogen ini akan mengalami pengembangan volumetrik
termal pada agen pemulihan dalam matriks resin untuk pemulihan keretakan. Di
bawah ujian tegangan padat (CT) dan dalam kitaran pemulihan ketiga, resin yang
diubah suai dengan PVC mempunyai purata peratus pemulihan tertinggi sebanyak
75-48% berbanding dengan PP, PE, atau PVA pada 67-31%. Kesan pemanjangan hayat
kelesuan bagi resin yang diubah suai bersama PVC atau PP menunjukkan
peningkatan dalam faktor masa sekitar 1.5 dan 1.1 kali selepas tempoh
pemulihan. Resin pemulihan (terubah suai) ini juga menunjukkan peningkatan
kekuatan bahan berbanding resin kawalan selepas didedahan kepada kitaran muatan
lesu. Proses pemulihan kelesuan dibuktikan melalui analisis morfologi pada
permukaan dan keratan rentas resin menggunakan mikroskop optik dan mikroskop
elektron pengimbasan (SEM). Secara keseluruhannya, sistem swapemulihan resin
heterogen dalam keadaan pepejal telah dibuktikan berkesan dalam menghalang
penyebaran keretakan lesu dan dapat memperbaiki swa-pemulihan bahan polimer
secara berkesan untuk peningkatan jangka hayat yang lebih tinggi.
Kata kunci: Agen pemulihan; hayat lesu; heterogen;
kekuatan residu; swapemulihan resin
RUJUKAN
Anja, G., Michael, B., Pavel, H.,
Ondrej, S. & Gerald, P. 2020. Mixed mode I/III fatigue fracture
characterization of polyoxymethylene. International
Journal of Fatigue 130: 245-269.
ASTM-D638. 2003. Standard
Test Method for Tensile Properties of Plastics. American Society for
Testing and Materials.
ASTM-D3479M. 2003. Standard
Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials.
American Society for Testing and Materials.
Awaja, F., Zhang, S.,
Tripathi, M., Nikiforov, A. & Pugno, N. 2016. Cracks, microcracks and
fracture in polymer structures: Formation, detection, autonomic repair. Progress in Materials Science 83:
536-573.
Blaiszik, B.J., Kramer, L.B., Olugebefola, S.C.,
Moore, J.S., Sottos, N.R. & White, S.R. 2010. Self-healing polymers and
composites. Annual Review of Materials
Research 40: 179-211.
Brown, E.N., White, S.R. & Sottos, N.R. 2005.
Retardation and repair of fatigue cracks in a microcapsule toughened epoxy
composite- Part II: In situ self-healing. Composites Science and
Technology 65(15-16): 2474-2480.
BS-13586. 2000. Plastics-
Determination of Fracture Toughness (G1C and K1C) -
Linear Elastic Fracture Mechanics (LEFM) Approach. British Standards Institute.
Gyarmati, B.,
Szilágyi, B.Á. & Szilágyi, A. 2017. Reversible interactions in self-healing
and shape memory hydrogels. European
Polymer Journal 93: 642-669.
Hamilton, A.R., Sottos, N.R. & White, S.R. 2012.
Mitigation of fatigue damage in self-healing vascular materials. Polymer 53(24): 5575-5581.
Hayes, S.A., Jones, F.R., Marshiya, K. & Zhang, W.
2007. A self-healing thermosetting composite material. Composites A: Applied Science and Manufacturing 38(4): 1116-1120.
Hirschberg, V.,
Lacroix, F., Wilhelm, M. & Rodrigue, D. 2019. Fatigue analysis of brittle
polymers via Fourier transform of the stress. Mechanics of Materials 137: 103-110.
Jamil, M.S.M., Jones, F.R., Muhammad, N.N. &
Makenan, S.M. 2015a. Solid-state self-healing systems: The diffusion of healing
agent for healing recovery. Sains
Malaysiana 44(6): 843-852.
Jamil, M.S.M., Makenan, S.M., Muhamad, N.N., Lazim,
A.M. & Jones, F. 2015b. Mechanistic studies of solid state self-healing
systems. Malaysian Journal of Analytical
Sciences 19(2): 428-436.
Kanu, N.J., Gupta,
E., Vates, U.K. & Singh, G.K. 2019. Self-healing composites: A
state-of-the-art review. Composites Part
A: Applied Science and Manufacturing 121: 474-486.
Katunin, A. &
Wronkowicz, A., 2017. Evolution of a fracture mechanism in a polymeric
composite subjected to fatigue with the self-heating effect. Procedia
Structural Integrity 5: 416-421.
Kim, S.Y., Sottos,
N.R. & White, S.R. 2019. Self-healing of fatigue damage in cross-ply
glass/epoxy laminates. Composites Science
and Technology 175: 122-127.
Kostopoulos, V., Kotrotsos, A., Sousanis, A. &
Sotiriadis, G. 2019. Fatigue behaviour of open-hole carbon fibre/epoxy
composites containing bis-maleimide based polymer blend interleaves as
self-healing agent. Composites Science
and Technology 171: 86-93.
Kullmer, G., Reschetnik, W., Schramm, B. &
Richard, H.A. 2016. Fatigue crack growth near regions with differing stiffness. Procedia Structural Integrity 2:
2994-3001.
Lee, M.W., An, S., Yoon, S.S.
& Yarin, A.L. 2018. Advances in self-healing materials based on vascular
networks with mechanical self-repair characteristics. Advances in Colloid and Interface Science 252: 21-37.
Luo, X.F., Ou, R.Q., Eberly, D.E., Singhal, A.,
Viratyaporn, W. & Mather, P.T. 2009. A thermoplastic/thermoset blend
exhibiting thermal mending and reversible adhesion. ACS Applied Materials & Interfaces 1(3): 612-620.
Meure, S., Varley, R.J., Wu, D.Y., Mayo, S., Nairn, K.
& Furman, S. 2012. Confirmation of the healing mechanism in a mendable
EMAA-epoxy resin. European Polymer
Journal 48(3): 524-531.
Michael, B., Hartmut, R.F. & Santiago, J.G. 2019.
Self-healing polymeric systems: Concepts and applications. In Smart Polymers and their Applications,
edited by Maria, R.A. & Julio, S.R. New York: Woodhead Publishing.
Muhamad, N.N. & Jamil, M.S. 2016. Homogeneous and
heterogeneous solid state self-healing system. Polymers and Polymer Composites 24(9): 815-824.
Murphy, E.B. & Wudl, F. 2010. The world of smart
healable materials. Progress in Polymer
Science 35(2): 223-251.
Sharma, J., Tewari,
K. & Arya, R.K. 2017. Diffusion in polymeric systems - A review on free
volume theory. Progress in Organic
Coatings 111: 83-92.
Skinner, T., Datta, S., Chattopadhyay, A. & Hall,
A. 2019. Fatigue damage behavior in carbon fiber polymer composites under
biaxial loading. Composites Part B:
Engineering 174: 936-942.
Urdl, K., Kandelbauer, A., Kern,
W., Müller, U., Thebault, M. & Zikulnig-Rusch, E. 2017. Self-healing of
densely crosslinked thermoset polymers - A critical review. Progress in Organic Coatings 104:
232-249.
Ye, X.J., Zhu, Y., Yuan, Y.C., Song, Y.X., Yang, G.C.,
Rong, M.Z. & Zhang, M.Q. 2017. Improvement of fatigue resistance of epoxy
composite with microencapsulated epoxy-SbF5 self-healing system. Express Polymer Letters 11(11): 853-862.
Zhang, C., Wang, H.
& Zhou, Q. 2018. Preparation and characterization of microcapsules based
self-healing coatings containing epoxy ester as healing agent. Progress
in Organic Coatings 125:
403-410.
Zhang, P. & Li,
G. 2016. Advances in healing-on-demand polymers and polymer composites. Progress in Polymer Science 57: 32-63.
*Pengarang
untuk surat-menyurat; email: suzeren@ukm.edu.my
|