| Sains
          Malaysiana 49(9)(2020): 2261-2267 
          
 http://dx.doi.org/10.17576/jsm-2020-4909-23
            
           
             
           Rice Husk Activated Carbon with NaOH
            Activation: Physical and Chemical Properties
            
           (Karbon Teraktif Sekam Padi Diaktif dengan
            NaOH: Sifat Fizikal dan Kimia)
            
           
             
           MOHAMAD
            JANI SAAD1,4*, CHIA CHIN HUA1, SUFFIAN MISRAN3,
            SARANI ZAKARIA1, MOHD SAIFUL SAJAB2 & MOHAMMAD HARIZ
            ABDUL RAHMAN4
  
           
             
           1Bioresources and Biorefinery Laboratory, Materials Science Program,
            Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
            Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           2Research Centre for Sustainable Process Technology, Faculty of
            Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM
            Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           3Forest Research Institute of Malaysia (FRIM), 52100 Kepong, Kuala
            Lumpur, Federal Territory, Malaysia
            
           
             
           4Malaysian Agriculture Research and Development Institute (MARDI), 43400
            Serdang, Selangor Darul Ehsan, Malaysia
            
           
             
           Diserahkan: 15 Oktober 2019/Diterima: 8 Mei
            2020
            
           
             
           ABSTRACT
            
           Activated
            carbon was produced from rice husk by activating with NaOH. Three types of
            samples were made at 850, 750, and 650 °C activation temperature. The
            properties of the samples were determined. The activated carbons have surface
            area of 429.82 m2/g from 850 °C activation, 121.39 m2/g
            (750 °C) and 93.89 m2/g (650 °C). The results were higher than rice
            husk carbon without activation (0.23 m2/g). The activated carbons
            have mesopore size. Proximate and ultimate analyses of the samples were also
            determined. The activation process increased the carbon content of the samples.
            Physical characteristics of the activated carbons were shown from the XRD
            analysis. FTIR demonstrated the different functional of the rice husk carbon
            and activated. The SEM images showed the pores on the surface of the activated
            carbon due to the NaOH activation.
  
           
             
           Keywords:
            Activated carbon; chemical properties; NaOH activation; physical properties;
            rice husk
            
           
             
           ABSTRAK
            
           Karbon
            teraktif (AC) daripada sekam padi telah dihasilkan dengan mengaktifkan NaOH.
            Tiga jenis sampel karbon teraktif dihasilkan pada suhu 850, 750 dan 650 °C.
            Keputusan luas permukaan sampel sekam karbon teraktif ialah 429.82 m2/g
            (850 °C), 121.39 m2/g (750 °C) dan 93.89 m2/g (650 °C).
            Nilai ini lebih tinggi jika dibandingkan dengan sekam karbon kawalan iaitu 0.23
            m2/g. Saiz liang bagi karbon teraktif sekam padi ialah 2-50 nm iaitu
            dalam saiz mesoliang. Hasil analisis proksimat dan muktamad turut ditentukan.
            Proses pengaktifan telah meningkatkan kandungan karbon sampel. Ciri fizikal
            karbon teraktif ditunjukkan daripada analisis XRD. FTIR menunjukkan kefungsian
            berbeza karbon sekam padi dan teraktif. Pemerhatian daripada ujian SEM
            mendapati adanya liang-liang pada permukaan karbon teraktif hasil daripada
            pengaktifan NaOH.
  
           
             
           Kata
            kunci: Karbon teraktif; pengaktifan NaOH; sekam padi; sifat fizikal; sifat
            kimia
            
           
             
           RUJUKAN
            
           Abdulsalam, M., Hasfalina, C.M., Mohamed, H.A., Abd
            Karim, S.F. & Faiez, M.S. 2018. Microwave irradiated coconut
            shell-activated carbon for decolourisation of palm oil mill effluent (POME). Food
              Research 2(6): 526-534.
  
           Alkhatib, M.F., Mamun, A.A. & Akbar, I. 2015.
            Application of response surface methodology (RSM) for optimization of color
            removal from POME by granular activated carbon. International Journal of
              Environmental Science and Technology 12(4): 1295-1302.
  
           An,
            D., Guo, Y., Zou, B., Zhu, Y. & Wang, Z. 2011. A study on the consecutive
            preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy 35: 1227-1234.
  
 Basta,
            A.H., Fierro, V., El-Saied, H. & Celzard, A. 2009. 2-steps KOH activation
            of rice straw: An efficient method for preparing high-performance activated
            carbons. Bioresource Technology 100:
            3941-3947.
  
           Cazetta,
            A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins,
            A.C., Silva, T.L., Moraes, C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced
              from coconut shell: Kinetics and equilibrium studies from the methylene blue
              adsorption. Chemical Engineering Journal 174:
                117-125.
  
 Chang,
            K.L., Chen, C.C., Lin, J.H., Hsien, J.F., Hsien, Wang, Y., Zhao, F., Shih,
            Y.H., Xing, Z.J. & Chen, S.T. 2014. Rice straw-derived activated carbons
            for the removal of carbofuran from an aqueous solution. New Carbon Material 29: 47-54.
  
           Chen, J.S., Zhang, F. & Li, G.D. 2008. Effects
            of raw material texture and activation manner on surface area of porous carbons
            derived from biomass resources. Journal of Colloid and Interface Science 327:
            108-114.
  
           Chunlan,
            L., Shaoping, X., Yixiong, G., Shuqin, L. & Changhou, L. 2005.  Effect of pre-carbonization of petroleum
            cokes on chemical activation process with KOH. Carbon 43: 2295-2301.
  
           Danish, M. & Ahmad,
            T. 2018. A review on utilization of wood biomass as a sustainable precursor for
            activated carbon production and application. Renewable and Sustainable Energy Reviews 87: 1-21.
  
           Enaime,
            G., Ennaciri, K., Ounas, A., Bacaoui, A., Seffen, M., Selmi, T. & Yaacoubi,
            A. 2017. Preparation and characterization of activated carbon from olive wastes
            by physical and chemical activation: Application to indigo carmine adsorption. J. Mater. Environ. Sci. 11: 4125-4137.
  
           Foo,
            K.Y. & Hameed, B.H. 2011.Utilization of rice husks as a feed stock for
            preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresources Technology 102:
            9814-9817.
  
           Foo, K.Y. & Hameed, B.H. 2012. Adsorption
            characteristics of industrial solid waste derived activated carbon prepared by
            microwave heating for methylene blue. Fuel Processing Technology 99:
            103-109.
  
           Guo, Y.P. & Rockstraw, D.A. 2007. Activated carbons
            prepared from rice hull by one-step phosphoric acid activation. Microporous and Mesoporous Materials 100: 12-19.
  
           Guo,
            Y.P., Yang, S.F., Fu, W.Y., Qi, J.R., Li, R.Z., Wang, Z.C. & Xu, H.D. 2003.
            Adsorption of malachite green on micro- and mesoporous rice husk-based active
            carbon. Dyes Pigments 56: 219-229.
  
           Hamza, U.D., Nasri, N.S., Amin, N.A.S., Mohammed, J.
  & Zain, H.M. 2016. Characteristics of oil palm shell biochar and activated
            carbon prepared at different carbonization times. Desalination and Water
              Treatment 57(17): 7999-8006.
  
           Hidayu, A.R. & Muda, N. 2016. Preparation and
            characterization of impregnated activated carbon from palm kernel shell and
            coconut shell for CO2 capture. Procedia
              Engineering 148: 106-113.
  
           International Union of Pure and Applied Chemistry
            (IUPAC) 1972. IUPAC Manual of Symbols and Terminology Appendix 2, Pt. 1.
            Colloid and Surface Chemistry. Pure and Applied Chemistry 31(4):
            578-638.
  
           Jabatan Pertanian Malaysia (JPM). 2017. Lapuran Keluasan Tanaman dan
            Keluaran Padi dan Beras Seluruh Malaysia. Jabatan Pertanian Malaysia.
            Accessed on 10 June 2019.
  
 Kalderis,
            D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle,
            J.O. & Fernandez-Pereira, C. 2008. Adsorption of polluting substances on
            activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal 144: 42-50.
  
           Kaman, S.P.D., Tan, I.A.W. & Lim,
            L.L.P. 2017. Palm oil mill effluent treatment using coconut shell - based
            activated carbon: Adsorption equilibrium and isotherm. MATEC Web of
              Conferences 87: 03009.
  
           Khadiran, T., Hussein, M.Z., Zainal, Z. & Rusli, R.
            2015. Textural and chemical properties of activated carbon prepared from
            tropical peat soil by chemical activation method. BioResources 10: 986-1007.
  
           Lu, C., Pan, L. & Zhu, B. 2015. Study the static adsorption/desorption
            of formaldehyde on activated carbon. International
              Forum on Energy, Environment Science and Materials (IFEESM 2015). pp.
            943-947.
  
 Ma,
            X. & Ouyang, F. 2013. Adsorption properties of biomass-based activated
            carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid
            activation.  Applied Surface Science 268: 566-570.
  
           Mohd Iqbaldin, M.N., Khudzir, I., Mohd Azlan, M.I.,
            Zaidi, A.G., Surani, B. & Zubri, Z. 2013. Properties of coconut shell
            activated carbon. Journal of Tropical Forest Science 25(4): 497-503.
  
           Mopoung, S., Inkum, S. &
            Anuwetch, L. 2015. Effect of temperature on micropore of activated carbon from
            sticky rice straw by H3PO4 activation. Carbon -
              Science and Technology 7(3): 24-29.
  
           Nasri, N.S., Basri, H. & Garba,
            A. 2015. Synthesis and characterization of low cost-porous carbon from palm oil
            shell via K2CO3 chemical activation process. Applied Mechanics and Materials 735:
            36-40.
  
 Oh,
            G.H. & Park, C.R. 2002. Preparation and characteristics of rice straw based
            porous carbon with high adsorption capacity. Fuel 81: 327-336.
  
           Oh, G.H., Yun, C.H. & Park, C.R. 2003. Role of
            KOH in the one-stage KOH activation of cellulosic biomass. Carbon Science 4: 180-184.
  
           Pandey, B.D., Saima, H.K.
  & Chattree, A. 2015. Preparation and characterization of activated carbon
            derived from rice husk by NaOH activation. International
              Journal of Mathematics and Physical Sciences Research 3(2): 158-164.
  
           Park, C.R. & Oh, G.H. 2002. Preparation and
            characteristics of rice straw based porous carbon with high absorption
            capacity. Fuel 81: 327-336.
  
           Perrin,
            A., Celzard, A., Albiniak, A., Kaczmarczyk, J., Mareche, J.F. & Furdin, G.
            2004. NaOH activation of anthracites: Effect of temperature on pore textures
            and methane storage ability. Carbon 42:
            2855-2901.
  
           Puziy,
            A.M., Poddubnaya, O.I., Martinez-Alonso, A., Suárez-Garcia, F. & Tascón,
            J.M.D. 2002. Synthetic carbons activated with phosphoric acid I. Surface
            chemistry and ion binding properties. Carbon 40: 1493-1505.
  
           Rhaman, M., Haque, M., Rouf, M., Siddique, M. &
            Islam, M. 2015. Preparation and characterization of activated carbon &
            amorphous silica from rice husk. Bangladesh Journal of Scientific and
              Industrial Research 50(4): 263-270.
  
           Rostamian, R., Heidarpour, M., Mousavi, S.F. &
            Afyuni, M. 2015. Characterization and
              sodium sorption capacity of biochar and activated carbon prepared from rice
              husk. Journal Agricultural Science Technology 17: 1057-1069.
  
 San Miguel, G., Fowler, G.D. & Sollars, C.J.
            2003.  A study of the characteristics of
            activated carbons produced by steam and carbon dioxide activation of waste tyre
            rubber. Carbon 41: 1009-1016.
  
           Schröder, E., Thomauske, K., Weber, C., Hornung, A.
  & Tumiatti, V. 2007. Experiments on the generation of activated carbon from
            biomass. Journal of Analytical and Applied Pyrolysis 79(1-2 SPEC. ISS.):
            106-111.
  
           Shamsuddin, M.S., Yusoff, N.R.N. & Sulaiman, M.A.
            2016. Synthesis and characterization of activated carbon produced from kenaf
            core fiber using H3PO4 activation. Procedia Chemistry 19: 558-565.
  
           Sharma, S. & Bhattacharya, A. 2017. Drinking water
            contamination and treatment techniques. Applied Water Science 7(3):
            1043-1067.
  
           Sobhy, M.Y., Hakim, A.E., Daifullah, M. & Sohair, A.E. 2015. Pore
            structure characterization of chemically modified biochar derived from rice
            straw. Environmental Engineering and
              Management Journal 14(2): 473-480.
  
 Soltani, N., Bahrami, A., Pech-Canul, M.I. &
            González, L.A. 2015. Review on the physicochemical treatments of rice husk for
            production of advanced materials. Chemical Engineering Journal 264:
            899-935.
  
           Srenscek-Nazzal,
            J., Kaminskaa, W., Michalkiewicza, B. & Korenb, Z. 2013. Production,
            characterization and methane storage potential of KOH-activated carbon from
            sugarcane molasses. Industrial Crops and
              Products 47: 153-159.
  
           Viboon, S., Chiravoot, P., Duangdao A. &
            Duangduen, A. 2008. Preparation and characterization of activated carbon from
            the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy
              and Fuels 22: 31-37.
  
           Wu,
            W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H.H. & Chen, Y.X.
            2012. Chemical characterizations of rice straw-derived bio char for soil
            amendment. Biomass Bioenergy 47: 268-276.
  
           Yakout, S.M., El Hakim Daifullah, A.M. & El-Reefy,
            S.A. 2015. Pore structure characterization of chemically modified biochar
            derived from rice straw. Environmental
              Engineering and Management 14(2): 473-480.
  
           Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017.
            Preparation and characterization of impregnated magnetic particles on oil palm
            frond activated carbon for metal ions removal. Sains Malaysiana 46(5): 773-782.
  
           Zhu,
            K., Fu, H., Zhang, J., Ly, X., Tang, J. & Xu, X. 2012. Studies on removal
            of NH4+-N from aqueous solution by using the activated
            carbons derived from rice husk. Biomass
              Bioenergy 43: 18-25.
  
           
             
           *Pengarang untuk surat-menyurat; email: mohamadjanisaad72@gmail.com
            
           
             
          
          
           
            
          
           
          
        
         
        
         
          
           
          
           
          
             
         |