Sains Malaysiana 49(9)(2020): 2323-2333
http://dx.doi.org/10.17576/jsm-2020-4909-29
Empty Fruit Bunch Cellulose based Sorbent for Oil Sorption in Palm Oil
Mill Effluent
(Penjerapan Selulosa Tandan Kosong Kelapa Sawit untuk Penjerapan Minyak
daripada Efluen Kilang Minyak Kelapa Sawit)
NORAISAH
JAHI1, RIZAFIZAH OTHAMAN1,2, AZWAN MAT
LAZIM1,2 & SURIA RAMLI1,2,3*
1Department of Chemical
Sciences,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
2Polymer Research Center (PORCE), Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Center for Water Research and Analysis (ALIR),
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
Diserahkan: 15 Oktober 2019/Diterima:
8 Mei 2020
ABSTRACT
The aim of this study was to develope hydrophobic biodegradable
cellulosic sorbent materials from empty fruit bunch (EFB) for oil sorption in
palm oil mill effluent (POME). EFB cellulose was
modified using acetic anhydride (AA) and the effect of ratio of EFB cellulose
mass to AA volume (1:20, 1:30, 1:40, 1:50 g/mL) at 3 h reaction time with 5%
(w/v) pyridine catalyst. The acetylation process was quantitatively determined
using the weight percent gain (WPG) and modified EFB cellulose (1:40) showed
the highest WPG (13.0%) compared to the other ratios. Fourier Transform
Infrared (FTIR) spectrum shows that after the modification, the intensity of
–OH peak at 3329 cm-1 decreased and the new peak at
1728 cm-1 of C=O ester emerged. This implied that acetylation
process was successful when AA volume increased except for 1:50 ratio. Sample
1:40 also showed good hydrophobicity characteristic with the degree of
hydrophobicity (DH) of 87.7%. X-ray diffraction (XRD) analysis shows that
crystallinity index for 1:40 is the lowest which indicated that the sample
become amorphous due to acetylation. The result is in agreement with scanning
electron microscope (SEM) micrograph that shows the surface morphogy of EFB
cellulose after the modification became rougher. Moreover, the modified EFB
cellulose 1:40 was able to absorb oil from POME up to 98.5%. Thus, it is proven that cellulose from EFB can be modified
to a certain ratio to make it an extremely promising natural source oil sorbent
in treating POME.
Keywords: Cellulose; chemical modification; oil
adsorbent; palm oil mill effluent
ABSTRAK
Kajian ini bertujuan untuk membangunkan selulosa hidrofobik biodegradasi
bahan penyerap daripada sisa tandan kosong kelapa sawit (TKKS) bagi penyerapan
minyak efluen kilang kelapa sawit (POME). Selulosa EFB telah diubah suai
menggunakan asetik anhidrida dan kesan nisbah berat selulosa daripada TKKS
kepada isi padu asetik anhidrida (AA) (1:20, 1:30, 1:40, 1:50 g/mL) dalam masa
tindak balas 3 jam dengan 5% (w/v) pemangkin piridina. Proses pengasetilan
ditentukan secara kuantitatif menggunakan peratus pertambahan berat (WPG), dan
selulosa TKKS terubah suai (1:40) menunjukkan WPG tertinggi (13.0%) berbanding
nisbah yang lain. Spektrum teknik inframerah transformasi Fourier (FTIR)
menunjukkan selepas pengubahsuaian, keamatan puncak –OH pada 3329 cm-1 berkurang
dan puncak baru pada 1728 cm-1 daripada C=O ester telah muncul. Ini
menunjukkan bahawa proses pengasetilan telah berjaya apabila isi padu AA
meningkat kecuali pada nisbah 1:50. Sampel 1:40 juga telah menunjukkan ciri
hidrofobik yang baik dengan darjah kehidrofobikan (DH) pada 87.7%. Analisis
pembelauan sinar-x (XRD) menunjukkan peratus indeks kehabluran untuk 1:40
adalah terendah yang menunjukkan sampel berkenaan menjadi amorfus disebabkan
oleh asetilasi. Hasil keputusan adalah seiring dengan mikrograf analisis
morfologi dan keratin rentas (SEM) yang menunjukkan morfologi permukaan
selulosa EFB selepas pengubahsuaian menjadi lebih kasar. Tambahan lagi,
selulosa EFB termodifikasi 1:40 berupaya untuk menyerap minyak daripda POME
sehingga 98.5%. Oleh itu, ini membuktikan bahawa selulosa daripada EFB boleh
diubah suai kepada nisbah tertentu untuk menjadikannya sumber penyerap minyak
semula jadi dalam merawat POME.
Kata kunci: Efluen kilang
minyak kelapa sawit; pengubahsuaian kimia; penjerapan minyak; selulosa
RUJUKAN
Abdullah,
M.A., Rahmah, A.U. & Man, Z. 2010. Physicochemical and sorption
characteristics of Malaysian Ceiba
pentandra (L.) Gaertn. as a natural oil sorbent. Journal of Hazardous Materials 177(1): 683-691.
Anuar,
N.I.S., Zakaria, S., Kaco, H., Hua, C.C., Chunhong, W. & Abdullah, S.H.
2018. Physico-mechanical, chemical composition, thermal degradation and
crystallinity of oil palm empty fruit bunch, kenaf and propylene fibres: A
comparative study. Sains Malaysiana 47(4): 839-851.
APHA.
2005. Standard Methods for the
Examination of Water and Wastewater. 21st ed. Washington, DC: American
Public Health Association.
Asadpour, R., Sapari, N.B., Isa, M.H. & Kakooei,
S. 2016. Acetylation of oil palm empty fruit bunch fiber as an adsorbent for
removal of crude oil. Environmental
Science and Pollution Research 23: 11740-11750.
Cai,
J., Fei, P., Xiong, Z., Shi, Y., Yan, K. & Xiong, H. 2013. Surface
acetylation of bamboo cellulose: Preparation and rheological properties. Carbohydrate Polymers 92(1): 11-18.
Chen, J., Xu, J., Wang, K., Cao, V. & Sun, R.
2016. Cellulose acetate fibers prepared from different raw materials with rapid
synthesis method. Carbohydrate Polymers 137: 685-692.
Deschamps, G., Caruel, H., Borredon, M., Albasi, C.,
Riba, J., Bonnin, C. & Vignoles, C. 2003. Oil removal from water by
sorption on hydrophobic cotton fibers. Study of sorption properties in dynamic
mode. Environmental Science and Technology 37(21): 504-5039.
Fan,
G., Wang, M., Liao, C., Fang, T., Li, J. & Zhou, R. 2013. Isolation of
cellulose from rice straw and its conversion into cellulose acetate catalyzed
by phosphotungstic acid. Carbohydrate
Polymers 94(1): 71-76.
Hamdan, W.N.A.N.M., Haan, T.Y. & Mohammad, A.W.
2018. Sustainable approach in palm oil industry-Green synthesis of palm oil
mill effluent based graphene sand composite (P-GSC) for aerobic palm oil mill
effluent treatment. Jurnal Kejuruteraan SI 1(7): 11-20.
Hamzah, F., Idris, A. & Shuan, T.K. 2011.
Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB)
by using combination of cellulose and β 1-4 glucosidase. Biomass Bioenergy 35: 1055-1059.
Hamzah, M.A.F., Jahim, M.J., Abdul, P.M. & Asis,
A.J. 2019. Investigation of temperature effect on start-up operation from
digestion of acidified palm oil mill effluent. Energies 12(13): 2473-2489.
Hassan,
M.A.A. & Puteh, M.H. 2007. Pre-treatment of palm oil mill effluent (POME): A
comparison study using chitosan and alum. Malaysian
Journal of Civil Engineering 19(2): 128-141.
Hassan,
N., Idris, A. & Akhtar, J. 2019. Overview on bio-refinery concept in
Malaysia: Potential high value added products from palm oil biomass. Jurnal Kejuruteraan SI 2(1): 113-124.
Hazman, N.A.S., Yasin, N.H.M., Takriff, M.S., Hassan,
H.A., Kamaruddin, K.F. & Hakimi, N.I.N.M. 2018. Integrated palm oil mill
effluent treatment and CO2 sequestration by microalgae. Sains Malaysiana 47(7): 1455-1464.
Hu, C., Reddy, N., Luo, Y., Yan, K. & Yang, Y.
2011. Thermoplastics from acetylated zein-and-oil-free corn distillers dried
grains with solubles. Biomass and
Bioenergy 35(2): 884-892.
Huang, K., Zhang, M., Zhang, G., Jiang, X. &
Huang, D. 2014. Acetylation modification of rice straw fiber and its thermal
properties. Cellulose Chemistry and
Technology 48: 199-207.
Ibrahim,
S., Wang, S. & Ang, H.M. 2010. Removal of emulsified oil from oily
wastewater using agricultural waste barley straw. Biochemical Engineering Journal 49(1): 78-83.
Jahi,
N., Engsiew, L., Othaman, R. & Ramli, S. 2015. Modification of oil palm
plantation wastes as oil adsorbent for palm oil mill effluent (POME). Malaysian Journal of Analytical Sciences 19(1): 31-40.
Jasni, J., Arisht, S.N., Yasin, N.H.M., Abdul, P.M.,
Lin, S.K., Liu, C.M., Wu, S.Y., Jahim, J.M. & Takriff, M.S. 2020.
Comparative toxicity effect of organic and inorganic substances in palm oil
mill effluent (POME) using native microalgae species. Journal of Water Process Engineering 34(2020): 101165.
Jonoobi,
M., Harun, J., Mathew, A.P., Hussein, M.Z.B. & Oksman, K. 2010. Preparation
of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2): 299-307.
Joseph, C.G., Wan Mohd Ashri Wan Daud, Shane, Q.K.
& Kogularama Sanmugam. 2015. Parametric and adsorption kinetic studies of
reactive black 5 removal from textile simulated wastewater using oil palm (Elaeis guineensis) empty fruit bunch. Journal of Applied Sciences 15(8):
1103-1111.
Kasim, N.N., Ismail, K., Ishak, M.A.M., Ahmad, R.,
Mohamed, A.R. & Nawawi, W.I. 2017. PALM DeTo: Resourceful, sustainable and
favorable solid biofuel. Symposium on
Innovation and Creativity (iMIT-SIC) 2: 191-197.
Lv, E., Xia, W., Tang, M. & Pu, Y. 2017.
Preparation of an efficient oil-spill adsorbent based on wheat straw. BioResources 12(1): 296-315.
Mahadeva,
S.K., Yun, S. & Kim, J. 2011. Flexible humidity and temperature sensor
based on cellulose-polypyrrole nanocomposite. Sensors and Actuators A: Physical 165(2): 194-199.
MPOB. 2015. Malaysian
Oil Palm Statistic 2015. 35th edition. MPOB, Bangi. p. 28.
Onwuka, J.C., Agbaji, E.B., Ajibola, V.O. & Okibe,
F.G. 2018. Treatment of crude oil-contaminated water with chemically modified
natural fiber. Applied Water Science 8: 86.
Onwuka, J.C., Agbaji, E.B., Ajibola, V.O. & Okibe,
F.G. 2016. Kinetic studies of surface modification of lignocellulosic Delonix regia pods as sorbent for crude
oil spill in water. Journal of Applied
Research and Technology 14: 415-424.
Pirani,
S. & Hashaikeh, R. 2013. Nanocrystalline cellulose extraction process and
utilization of the byproduct for biofuels production. Carbohydrate Polymers 93(1): 357-363.
Roslan, R., Zakaria, S., Chia, C.H., Boehm, R. &
Laborie, M.P. 2014. Physico-mechanical properties of resol phenolic adhesives
derived from liquefaction of oil palm empty fruit bunch fibres. Industrial Crops and Products 62:
119-124.
Said,
A.E.A., Ludwick, A.G. & Aglan, H.A. 2009. Usefulness of raw bagasse for oil
absorption: A comparison of raw and acylated bagasse and their components. Bioresource Technology 100(7):
2219-2222.
Sajab, M.S., Jauhari, W.N.W.A.R., Chia, C.H., Zakaria,
S., Kaco, H. & Noor, A.A.M. 2018. Oleophilicity and oil-water separation by
reduced graphene oxide grafted oil palm empty fruit bunch fibres. Sains Malaysiana 47(8): 1891-1896.
Takriff, M.S., Jaafar, N.L. & Abdullah, S.R.S.
2014. A review of biofilm treatment systems in treating downstream palm oil
mill effluent (POME). Journal of Applied
Sciences 14: 1334-138.
Yamada, H., Tanaka, R., Sulaiman, O., Hashim, R.,
Hamid, Z.A.A. & Yahya, M.K.A. 2010. Old oil palm trunk: A promising source
of sugars for bioethanol production. Biomass Bioenergy 34: 1608-1613.
Zakaria,
S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014.
Characterization of residue from EFB and kenaf core fibres in the liquefaction
process. Sains Malaysiana 43(3):
429-435.
*Pengarang
untuk surat-menyurat; email: su_ramli@ukm.edu.my
|