Sains Malaysiana 50(10)(2021): 3095-3106

http://doi.org/10.17576/jsm-2021-5010-22

 

Hypocholesterolemic Effect of Acacia and Citrus Honeys on Cholesterol Induced Sprague Dawley Rats

(Kesan Hipokolesterolemik Madu Akasia dan Sitrus pada Tikus Sprague Dawley Sprague Teraruh Kolesterol)

 

MUHAMMAD BILAL HUSSAIN, RABIA SHABIR AHMAD*, MUHAMMAD UMAIR ARSHAD, ALI IMRAN & MUHAMMAD IMRAN

 

Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan

 

Diserahkan: 1 November 2020/Diterima: 18 Februari 2021

 

ABSTRACT

During the last decade, scientific investigations have put more focus on diet based therapies to prevent numerous maladies especially hypercholesterolemia and related disorders. Current project was designed to discover the nutraceutical worth of natural unifloral honeys from Acacia nilotica (Desi Kikar) and Citrus limetta (Mosambi) against hypercholesterolemia. Initially both honey varieties were analyzed for TPC and TFC, followed by DPPH and FRAP assays. Afterwards, honey drinks were prepared using different concentrations of Acacia and Citrus honeys (10:20:30 g/250 mL water) and were tested in experimental rat model. Initially the rats were provided with high cholesterol diet (2%) to induce hypercholesterolemia, which were then provided with honey drinks for 8 weeks. These were monitored regularly for feed and water intake and weekly for body weight gain. The blood samples for total cholesterol, LDL, HDL, triglyceride levels as well as safety assessment tests were analyzed at the intervals of 0, 28, and 56 days, which showed that Acacia honey was better in terms of antioxidant potential (DPPH, FRAP, and TPC) than the Citrus honey. Feed and drink intakes along with body weight gain showed significant effect among all the experimental groups. Substantial reduction in cholesterol, LDL and triglycerides was observed in G3 (213.82±3.36 to 183.95±3.02 mg/dL), (150.05±2.30 to 125.44±3.32 mg/dL) and (163.24±4.87 to 133.64±4.75 mg/dL), respectively, from 0 to 56th day. Liver and kidney functioning values decreased within the normal range. Owing to strong antioxidant potential, Acacia honey was proved to be more effective in controlling hypercholesterolemia than the Citrus honey.

 

Keywords: Acacia honey; antioxidants; Citrus honey; hypercholesterolemia

 

ABSTRAK

Sepanjang dekad yang lalu, penyelidikan saintifik lebih tertumpu pada terapi berasaskan diet untuk mencegah banyak penyakit terutama hiperkolesterolemia dan gangguan yang berkaitan. Projek ini dirancang untuk mengkaji nilai nutraseutikal madu unifloral semula jadi daripada Acacia nilotica (Desi Kikar) dan Citrus limetta (Mosambi) terhadap hiperkolesterolemia. Pada mulanya kedua-dua varieti madu dianalisis untuk TPC dan TFC, diikuti dengan asai DPPH dan FRAP. Selepas itu, minuman madu disediakan menggunakan kepekatan yang berbeza daripada madu Akasia dan Sitrus (10:20:30 g/250 mL air) dan diuji dalam model tikus uji kaji. Pada mulanya tikus diberi diet tinggi kolesterol (2%) untuk mengaruh hiperkolesterolemia, yang kemudian diberikan minuman madu selama 8 minggu. Ia dipantau secara berkala untuk pengambilan makanan dan air dan setiap minggu untuk kenaikan berat badan. Sampel darah untuk kadar kolesterol jumlah, LDL, HDL, aras trigliserida serta ujian penilaian keselamatan dianalisis pada selang 0, 28 dan 56 hari yang menunjukkan bahawa madu Akasia lebih baik daripada segi potensi antioksidan (DPPH, FRAP dan TPC) daripada madu Sitrus. Pengambilan makanan dan minuman bersama dengan kenaikan berat badan menunjukkan kesan yang signifikan antara semua kumpulan uji kaji. Pengurangan kolesterol, LDL dan trigliserida yang ketara diperhatikan pada G3 (213.82 ± 3.36 hingga 183.95 ± 3.02 mg/dL), (150.05 ± 2.30 hingga 125.44 ± 3.32 mg/dL) dan (163.24 ± 4.87 hingga 133.64 ± 4.75 mg/dL), masing-masing dari 0 hingga hari ke-56. Nilai fungsi hati dan ginjal menurun dalam julat normal. Oleh kerana potensi antioksidan yang kuat, madu Akasia terbukti lebih berkesan dalam mengawal hiperkolesterolemia daripada madu Sitrus.

 

Kata kunci: Antioksidan; hiperkolesterolemia; madu Akasia; madu Sitrus

 

RUJUKAN

Abdel-Moneim, W.M. & Ghafeer, H.H. 2007. The potential protective effect of natural honey against cadmium-induced hepatotoxicity and nephrotoxicity. Mansoura Journal of Forensic Medicine and Clinical Toxicology 15(2): 75-98.

Achuba, F.I. & Nwokogba, C.C. 2015. Effects of honey supplementation on hydrocarbon-induced kidney and liver damage in wistar albino rats. Biokemistri 27(1): 50-55.

Adnan, F., Sadiq, M. & Jehangir, A. 2011. Anti-hyperlipidemic effect of acacia honey (desi kikar) in cholesterol-diet induced hyperlipidemia in rats. Biomedica 27(13): 62-67.

Afroz, R., Tanvir, E.M., Hossain, M., Gan, S.H., Parvez, M., Islam, A. & Khalil, M. 2014. Protective effect of Sundarban honey against acetaminophen-induced acute hepatonephrotoxicity in rats. Evidence-Based Complementary and Alternative Medicine 2014: 143782.

Ahmad, R.S., Hussain, M.B., Saeed, F., Waheed, M. & Tufail, T. 2017. Phytochemistry, metabolism, and ethnomedical scenario of honey: A concurrent review. International Journal of Food Properties 20(sup1): S254-S269.

Ahmed, M., Imtiaz Shafiq, M., Khaleeq, A., Huma, R., Abdul Qadir, M., Khalid, A. & Samad, A. 2016. Physiochemical, biochemical, minerals content analysis, and antioxidant potential of national and international honeys in Pakistan. Journal of Chemistry 2016: 8072305.

Alagwu, E.A., Okwara, J.E., Nneli, R.O. & Osim, E.E. 2011. Effect of honey intake on serum cholesterol, triglycerides and lipoprotein levels in albino rats and potential benefits on risks of coronary heart disease. Nigerian Journal of Physiological Sciences 26: 161-165.

Ali, A., Akhtar, N., Khan, B.A., Khan, M.S., Rasul, A., Shahiq-UZ-Zaman, Khalid, N., Waseem, K., Mahmood, T. & Ali, L. 2012. Acacia nilotica: A plant of multipurpose medicinal uses. Journal of Medicinal Plants Research 6(9): 1492-1496.

Alvarez-Suarez, J.M., Gasparrini, M., Forbes-Hernández, T.Y., Mazzoni, L. & Giampieri, F. 2014. The composition and biological activity of honey: A focus on Manuka honey. Foods 3(3): 420-432.

Annoni, G., Botasso, B.M., Ciaci, D., Donato, M.F. & Tripodi, A. 1982. Liquid triglycerides (GPO-PAP). Medi Diagnostic Italy. Journal of Clinical Medicine 9: 115.

Ballantyne, C.M., Banach, M., Mancini, G.J., Lepor, N.E., Hanselman, J.C., Zhao, X. & Leiter, L.A. 2018. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis 277: 195-203.

Basuny, A.M., Gaafar, A.M. & Arafat, S.M. 2009. Tomato lycopene is a natural antioxidant and can alleviate hypercholesterolemia. African Journal of Biotechnology 8: 23.

Benzie, I.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239(1): 70-76.

Chaudhari, S.Y., Ruknuddin, G. & Prajapati, P. 2016. Ethno medicinal values of citrus genus: A review. Medical Journal of Dr. DY Patil University 9(5): 560.

El-Haskoury, R., Al-Waili, N., Kamoun, Z., Makni, M., Al-Waili, H. & Lyoussi, B. 2018. Antioxidant activity and protective effect of Carob honey in CCl4-induced kidney and liver injury. Archives of Medical Research 49(5): 306-313.

Fihri, A.F., Al-Waili, N.S., El-Haskoury, R., Bakour, M., Amarti, A., Ansari, M.J. & Lyoussi, B. 2016. Protective effect of morocco carob honey against lead-induced anemia and hepato-renal toxicity. Cellular Physiology and Biochemistry 39(1): 115-122.

Hajar, R. 2016. Framingham contribution to cardiovascular disease. Heart Views: The Official Journal of the Gulf Heart Association 17(2): 78.

Isla, M.I., Craig, A., Ordoñez, R., Zampini, C., Sayago, J., Bedascarrasbure, E. & Maldonado, L. 2011. Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT-Food Science and Technology 44(9): 1922-1930.

Kıvrak, Ş. & Kıvrak, İ. 2017. Assessment of phenolic profile of Turkish honeys. International Journal of Food Properties 20(4): 864-876.

Kumari, B., Kumar, P., Keshari, J.R., Kumar, A., Pankaj, S. & Chaudhary, R.K. 2017. Serum BUN and creatinine estimation in patients of overt hypothyroidism: A case control study. International Journal of Research in Medical Sciences 5(9): 3990-3993.

Laslett, L.J., Alagona, P., Clark, B.A., Drozda, J.P., Saldivar, F., Wilson, S.R. & Hart, M.  2012. The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology. Journal of the American College of Cardiology 60(25 Supplement): S1-S49.

Majid, M., Younis, M.A., Naveed, A.K., Shah, M.U., Azeem, Z. & Tirmizi, S.H. 2013. Effects of natural honey on blood glucose and lipid profile in young healthy Pakistani males. Journal of Ayub Medical College Abbottabad 25(3-4): 44-47.

McNamara, J.R., Cohn, J.S., Wilson, P.W. & Schaefer, E.J. 1990. Calculated values for low-density lipoprotein cholesterol in the assessment of lipid abnormalities and coronary disease risk. Clinical Chemistry 36(1): 36-42.

Mendis, S., Puska, P., Norrving, B. & World Health Organization. 2011. Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization.

Mohammadimanesh, A., Vahidiniya, A.A., Doaei, S., Gholamalizadeh, M., Shahvegharasl, Z., Salehi, I. & Khosravi, H.M. 2019. The effect of different types of honey on the lipid profile of streptozotocin-induced diabetic rats. Archives of Medical Sciences Atherosclerotic Diseases 4: e113-e118.

Münstedt, K., Hoffmann, S., Hauenschild, A., Bülte, M., von Georgi, R. & Hackethal, A. 2009. Effect of honey on serum cholesterol and lipid values. Journal of Medicinal Food 12(3): 624-628.

Mussatto, S.I. & Mancilha, I.M. 2007. Non-digestible oligosaccharides: A review. Carbohydrate Polymers 68(3): 587-597.

Nemoseck, T.M., Carmody, E.G., Furchner-Evanson, A., Gleason, M., Li, A., Potter, H. & Kern, M. 2011. Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats. Nutrition Research 31(1): 55-60.

Rao, P.V., Krishnan, K.T., Salleh, N. & Gan, S.H. 2016. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia 26(5): 657-664.

Ruiz-Ruiz, J.C., Matus-Basto, A.J., Acereto-Escoffié, P. & Segura-Campos, M.R. 2017. Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology 28(6): 1424-1437.

Samat, S., Kanyan Enchang, F., Nor Hussein, F. & Wan Ismail, W.I. 2017. Four-week consumption of Malaysian honey reduces excess weight gain and improves obesity-related parameters in high fat diet induced obese rats. Evidence-Based Complementary and Alternative Medicine 2017: 1342150.

Samat, S., Nor, N.A.M., Hussein, F.N. & Ismail, W.I.W. 2014. Effects of Gelam and Acacia honey acute administration on some biochemical parameters of Sprague Dawley rats. BMC Complementary and Alternative Medicine 14(1): 146.

Shiroma, E.J. & Lee, I.M. 2010. Physical activity and cardiovascular health: Lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 122(7): 743-752.

Singleton, V.L., Orthofer, R. & Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152-178.

Stockbridge, H., Hardy, R.I. & Glueck, C.J. 1989. Public cholesterol screening: Motivation for participation, follow-up outcome, self-knowledge, and coronary heart disease risk factor intervention. The Journal of Laboratory and Clinical Medicine 114(2): 142-151.

Tanvir, E.M., Afroz, R., Chowdhury, M.A.Z., Khalil, M.I., Hossain, M.S., Rahman, M.A. & Gan, S.H. 2015. Honey has a protective effect against chlorpyrifos-induced toxicity on lipid peroxidation, diagnostic markers and hepatic histoarchitecture. European Journal of Integrative Medicine 7(5): 525-533.

Tiffe, T., Wagner, M., Rücker, V., Morbach, C., Gelbrich, G., Störk, S. & Heuschmann, P.U. 2017. Control of cardiovascular risk factors and its determinants in         the general population-findings from the STAAB cohort study.    BMC Cardiovascular Disorders 17(1): 276.

Uchida, K., Satoh, T., Ogura, Y., Yamaga, N. & Yamada, K. 2001. Effect of partial ileal bypass on cholesterol and bile acid metabolism in rats. Yanago Acta Medica 44: 69-77.

World Health Organization. 2018. Mortality and Global Health Estimates: Causes of Death; Projections for 2015-2030. Projection of death rates.

 

*Pengarang untuk surat-menyurat; email: rabiaahmad@gcuf.edu.pk

 

 

 

 

sebelumnya