Sains Malaysiana 50(10)(2021): 3127-3138
http://doi.org/10.17576/jsm-2021-5010-24
Impact of Al2O3 and Dy2O3 Substitution on the Physical, Structural and Radiation Shielding Properties of
Li2O-B2O3 Glass System
(Kesan PenggantianAl2O3 dan Dy2O3 pada Sifat Fizikal, Struktur dan Pelindung Radiasi Sistem KacaLi2O-B2O3)
O.B. ALJEWAW1,
M.K.A. KARIM2*, M.H.M. ZAID2,
M.K. HALIMAH2, N.M. NOOR2, M.H.A. MHAREB3,4 & Y.S. ALAJERAMI5,6
1Biotechnology Research Centre, Tripoli, P.O. Box Tajoura 3031, Libya
2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
3Department of Physics, College of Science, Imam
Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
4Basic and Applied Scientific Research Center, Imam
Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
5Physics and Astronomy, Science Faculty, Ohio
University, USA
6Medical Imaging Department, Applied Medical Sciences
Faculty, Al Azhar University-Gaza
Diserahkan: 9 Oktober 2020/Diterima:
3 Februari 2021
Abstract
A new series of
lithium-borate glass systems (23Li2O-72B2O3 in
mol%) were synthesized with the substitution of Al2O3 (5
mol.%) as a modifier and doped with 0.3 and 0.5 mol% of Dy2O3.
Four series of glasses (S1, S2, S3 and S4) were synthesized via the
conventional melt-quenching technique and characterized by using UV-Visible-NIR
absorption spectrometer and Fourier transform infrared (FTIR) spectroscopy. The
current investigation gives further insight on the structural and optical
properties of the samples. The diffraction spectrum obtained from the X-ray
Diffraction (XRD) analysis shows no typical peaks in the glass system, which
indicates its amorphous phase. The optical properties of Al3+ and Dy3+ ions were evaluated and found that there is a pivot effect for the addition of
Al2O3 and Dy2O3 for the glass
system. Notably, the sample S2 shows different behaviours for physical,
structural, and optical properties compared with other prepared glass samples
that can be attributed to the increment of Al2O3.
Besides, the physical and ionizing shielding features were investigated for
current glass samples. The radiation shielding properties were examined within
the energy range of 0.015 until 15 MeV. The sample S4 has the optimum radiation
shielding features as a result of the addition of Dy2O3.
Hence, the composition attributes a new glass system that can be used in
various applications such as radiation dosimeter and photon shielding materials.
Keywords: Dysprosium oxide; lithium-aluminium-borate glasses;
radiation shielding properties; structural properties
ABSTRAK
Suatu siri baru sistem kaca litium-borat (23Li2O-72B2O3 dalam mol%) disintesis dengan penggantian Al2O3 (5 mol.%) sebagai pengubah suai dan terdop dengan 0.3 dan 0.5 mol% Dy2O3. Empat siri gelas (S1, S2, S3 dan S4) disintesis melalui teknik sepuh lindap konvensional dan dicirikan dengan menggunakan spektrometer penyerapan UV-boleh nampak-NIR dan spektroskopi inframerah transformasi Fourier (FTIR). Kajian semasa memberikan gambaran lebih lanjut mengenai sifat struktur dan optik sampel. Spektrum belauan yang diperoleh dari analisis pembelauan sinar-X (XRD) tidak menunjukkan puncak khas dalam sistem kaca yang menunjukkan fasa amorfusnya. Sifat optik ion Al3+ dan Dy3+ dinilai dan didapati bahawa terdapat kesan pangsi pada penambahan Al2O3 dan Dy2O3 untuk sistem kaca. Terutama, sampel S2 menunjukkan tingkah laku yang berbeza untuk sifat fizikal, struktur dan optik berbanding dengan sampel kaca lain yang boleh dikaitkan dengan kenaikan Al2O3. Selain itu, ciri-ciri fizikal dan perlindungan mengion juga dikaji bagi setiap sampel kaca. Sifat pelindung diperiksa dalam julat tenaga dari 0.015 hingga 15 MeV. Sampel S4 mempunyai ciri pelindung yang optimum disebabkan penambahan Dy2O3. Oleh itu, komposisi mengaitkan sistem kaca baru yang dapat digunakan dalam pelbagai aplikasi seperti dosimeter radiasi dan bahan pelindungan foton.
Kata kunci: Disprosium oksida; gelas litium-aluminium-borat; pencirian perlindungan sinaran; pencirian struktur
RUJUKAN
Alajerami,
Y.S., Drabold, D., Mhareb, M.H.A., Cimatu, K.L.A., Chen, G. & Kurudirek, M.
2020. Radiation shielding properties of bismuth borate glasses doped with
different concentrations of cadmium oxides. Ceramics International 46(8): 12718-12726. https://doi.org/10.1016/j.ceramint.2020.02.039.
Alajerami, Y.S.M., Mhareb, M.H.A., Abushab, K. & Ramadan,
K. 2019. Effect of co-doping of lithium on the dosimetric properties of
dysprosium-doped sodium borate glass system. Physica B: Condensed Matter 558(February): 142-145. https://doi.org/10.1016/j.physb.2019.01.046.
Bagheri, R., Khorrami Moghaddam, A. & Yousefnia, H. 2017.
Gamma ray shielding study of barium–bismuth–borosilicate glasses as transparent
shielding materials using MCNP-4C Code, XCOM program, and available
experimental data. Nuclear Engineering and Technology 49(1): 216-223.
https://doi.org/10.1016/j.net.2016.08.013.
Gedam, R.S. & Ramteke, D.D. 2012. Electrical and optical
properties of lithium borate glasses doped with Nd2O3. Journal
of Rare Earths 30(8): 785-789.
https://doi.org/10.1016/S1002-0721(12)60130-6.
Gomaa, H.M., Sayyed, M.I., Tekin, H.O., Lakshminarayana, G.
& EL-Dosokey, A.H. 2019. Correlate the structural changes to gamma
radiation shielding performance evaluation for some calcium bismuth-borate
glasses containing Nb2O5. Physica B: Condensed Matter 567: 109-112. https://doi.org/10.1016/j.physb.2018.11.011.
Hashim, S., Mhareb, M.H.A., Ghoshal, S.K., Alajerami, Y.S.M.,
Bradley, D.A., Saripan, M.I., Tamchek, N. & Alzimami, K. 2015. Luminescence
characteristics of Li2O-MgO-B2O3 doped with Dy3+ as a solid TL detector. Radiation Physics and Chemistry 116: 138-141.
https://doi.org/10.1016/j.radphyschem.2015.04.007.
Kaur, P., Singh, K.J., Thakur, S., Singh, P. & Bajwa,
B.S. 2019. Investigation of bismuth borate glass system modified with barium
for structural and gamma-ray shielding properties. Spectrochimica Acta -
Part A: Molecular and Biomolecular Spectroscopy 206: 367-377.
https://doi.org/10.1016/j.saa.2018.08.038.
Khalilzadeh, N., Bin Saion, E., Mirabolghasemi, H., Soltani,
N., Bin Shaari, A.H., Bin Hashim, M., Mod Ali, N. & Dehzangi, A. 2016a.
Formation and characterization of ultrafine nanophosphors of lithium
tetraborate (Li2B4O7) for personnel and
medical dosimetry. Journal of Materials Research and Technology 5(3):
206-212. https://doi.org/10.1016/j.jmrt.2015.11.002.
Khalilzadeh, N., Saion, E. Bin, Mirabolghasemi, H., Shaari,
A.H. Bin, Hashim, M. Bin, Ahmad, M.B.H., Mod Ali, N. & Dehzangi, A. 2016b.
Single step thermal treatment synthesis and characterization of lithium
tetraborate nanophosphor. Journal of Materials Research and Technology 5(1): 37-44. https://doi.org/10.1016/j.jmrt.2015.05.005.
Kumar, M.V.S., Rajesh, D., Balakrishna, A. & Ratnakaram,
Y.C. 2013. Optical absorption and photoluminescence properties of Dy3+ doped heavy metal borate glasses - Effect of modifier oxides. Journal of
Molecular Structure 1041: 100-105.
https://doi.org/10.1016/j.molstruc.2013.03.009
Kurudirek, M. 2014. Photon buildup factors in some dosimetric
materials for heterogeneous radiation sources. Radiation and Environmental
Biophysics 53: 175-185. https://doi.org/10.1007/s00411-013-0502-9.
Lakshminarayana, G., Baki, S.O., Kaky, K.M., Sayyed, M.I.,
Tekin, H.O., Lira, A., Kityk, I.V. & Mahdi, M.A. 2017a. Investigation of
structural, thermal properties and shielding parameters for multicomponent
borate glasses for gamma and neutron radiation shielding applications. Journal
of Non-Crystalline Solids 471: 222-237.
https://doi.org/10.1016/j.jnoncrysol.2017.06.001.
Lakshminarayana, G., Baki, S.O., Lira, A., Sayyed, M.I.,
Kityk, I.V., Halimah, M.K. & Mahdi, M.A. 2017b. X-ray photoelectron
spectroscopy (XPS) and radiation shielding parameters investigations for zinc
molybdenum borotellurite glasses containing different network modifiers. Journal
of Materials Science 52: 7394-7414. https://doi.org/10.1007/s10853-017-0974-0.
Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P. &
Chewpraditkul, W. 2011. Physical, optical, structural and gamma-ray shielding
properties of lead sodium borate glasses. Journal of Physics and Chemistry
of Solids 72(4): 245-251. https://doi.org/10.1016/j.jpcs.2011.01.007.
Mann, K.S. & Korkut, T. 2013. Gamma-ray buildup factors
study for deep penetration in some silicates. Annals of Nuclear Energy 51: 81-93. https://doi.org/10.1016/j.anucene.2012.08.024.
Mhareb, M.H.A. 2020. Physical, optical and shielding features
of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Applied Physics A:
Materials Science and Processing 126: 71.
https://doi.org/10.1007/s00339-019-3262-9.
Mhareb, M.H.A., Almessiere, M.A., Sayyed, M.I. &
Alajerami, Y.S.M. 2019. Physical, structural, optical and photons attenuation
attributes of lithium-magnesium-borate glasses: Role of Tm2O3 doping. Optik 182: 821-831. https://doi.org/10.1016/j.ijleo.2019.01.111.
Mhareb, M.H.A., Hashim, S., Ghoshal, S.K., Alajerami, Y.S.M.,
Bqoor, M.J., Hamdan, A.I., Saleh, M.A. & Abdul Karim, M.K.B. 2016. Effect
of Dy2O3impurities on the physical, optical and
thermoluminescence properties of lithium borate glass. Journal of
Luminescence 177: 366-372. https://doi.org/10.1016/j.jlumin.2016.05.002.
Mhareb, M.H.A., Hashim, S., Ghoshal, S.K., Alajerami, Y.S.M.,
Saleh, M.A., Dawaud, R.S. & Azizan, S.A.B. 2014. Impact of Nd3+ ions on physical and optical properties of lithium magnesium borate glass. Optical
Materials 37: 391-397. https://doi.org/10.1016/j.optmat.2014.06.033.
Mostafa, A.M.A., Issa, S.A.M. & Sayyed, M.I. 2017. Gamma
ray shielding properties of PbO-B2O3-P2O5 doped with WO3. Journal of Alloys and Compounds 708: 294-300.
https://doi.org/10.1016/j.jallcom.2017.02.303.
Okasha, A., Abdelghany, A.M. & Marzouk, S.Y. 2020. The
influence of Ba2+ and Sr2+ ions with the Dy3+ ions on the optical properties of lead borate glasses: Experimental and
Judd-Ofelt comparative study. Journal of Materials Research and Technology 9(1): 59-66. https://doi.org/10.1016/j.jmrt.2019.10.029.
Raghda Saeif Eddin Said Dawaud, Suhairul Hashim, Yasser Saleh
Mustafa Alajerami, Mhareb, M.H.A. & Tamchek. N. 2014. Optical and
structural properties of lithium sodium borate glasses doped Dy3+ ions. Journal of Molecular Structure 1075: 113-117.
https://doi.org/10.1016/j.molstruc.2014.06.032.
Ramteke, D.D., Annapurna, K., Deshpande, V.K. & Gedam,
R.S. 2014. Effect of Nd3+ on spectroscopic properties of lithium
borate glasses. Journal of Rare Earths 32(12): 1148-1153.
https://doi.org/10.1016/S1002-0721(14)60196-4.
Şakar, E., Özpolat, Ö.F., Alım, B., Sayyed, M.I.
& Kurudirek, M. 2020. Phy-X/PSD: Development of a user friendly online
software for calculation of parameters relevant to radiation shielding and
dosimetry. Radiation Physics and Chemistry 166: 108496.
https://doi.org/10.1016/j.radphyschem.2019.108496.
Sayyed, M.I., Kaky, K.M., Şakar, E., Akbaba, U., Taki,
M.M. & Agar, O. 2019. Gamma radiation shielding investigations for selected
germanate glasses. Journal of Non-Crystalline Solids 512: 33-40.
https://doi.org/10.1016/j.jnoncrysol.2019.02.014.
Sayyed, M.I., Mhareb, M.H.A., Abbas, Z.Y., Almousa, N.,
Laariedh, F., Kaky, K.M. & Baki, S.O. 2019. Structural, optical, and shielding
investigations of TeO2–GeO2–ZnO–Li2O–Bi2O3 glass system for radiation protection applications. Applied Physics A:
Materials Science and Processing.
https://doi.org/10.1007/s00339-019-2709-3.
Yasser Saleh Mustafa Alajerami, Suhairul Hashim, Ahmad Termizi
Ramli, Muneer Aziz Saleh & Taiman Kadni. 2013. Thermoluminescence
characteristics of the Li2CO3–K2CO3–H3BO3 glass system co-doped with CuO and MgO. Journal of Luminescence 143:
1-4. https://doi.org/10.1016/j.jlumin.2013.04.023.
Yasser Saleh Mustafa Alajerami, Suhairul Hashim, Wan Muhamad
Saridan Wan Hassan, Ahmad Termizi Ramli & Azman Kasim. 2012. Optical
properties of lithium magnesium borate glasses doped with Dy3+ and
Sm3+ ions. Physica B: Condensed Matter 407(13): 2398-2403.
https://doi.org/10.1016/j.physb.2012.03.033.
*Pengarang untuk surat-menyurat; email: mkhalis@upm.edu.my
|