Sains Malaysiana 50(11)(2021): 3241-3250
http://doi.org/10.17576/jsm-2021-5011-08
Separation of Polar Compounds using Poly(Ethylene Oxide)
Bonded Stationary Capillary Liquid Chromatography
(Pengasingan Sebatian Kutub menggunakan Kromatografi Cecair Kapilari
Terikat Poli(Etilena Oksida))
ROZA LINDA1*,
ABDULLAH1, MOHAMAD RAFI2, ASTER RAHAYU3, LEE
WAH LIM4 & TOYOHIDE TAKEUCHI4
1Department of Chemistry Education, Faculty of
Education and Teacher Training, University of Riau, Pekanbaru, Indonesia
2Department of Chemistry, Faculty of
Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
3Department of Chemical Engineering, Faculty of
Industrial Technology, Ahmad Dahlan University, Yogyakarta, Indonesia
4Department of Chemistry and Biomolecular
Science, Faculty of Engineering, Gifu University, Gifu, Japan
Diserahkan: 21 April 2020/Diterima:
15 Mac 2021
ABSTRACT
Poly(ethylene oxide) (PEO) bonded stationary phase has been synthesized
by a single and simple step reaction. Poly(ethylene glycol monomethyl ether
p-toluene sulfonate) (tosylated-PEO, molecular weight 900, n ≈ 18) was
chemically bonded to 3-aminopropyl silica (TSKgel NH2-60, 5 µm
particle size, and 60 Å mean pore diameter). The prepared stationary phase was
able to separate polar compounds such as phenolics and nucleobases in capillary
liquid chromatography. The retention and separation of phenolics and
nucleobases could be achieved under isocratic elution condition. Nucleobases
such as thymine, adenine, uracil, uridine, cytidine and toluene and phenolics
(phenol, pyrocatechol, pyrogallol) were baseline separated in less than 6 min
using 98% acetonitrile and less than 7 minutes using 80% acetonitrile,
respectively. We demonstrated that the retention of nucleobases as analyte
decreased with decreasing eluent concentration. The retention of these polar
compounds was believed to be based on dipole-dipole and/or hydrogen-bonding
interactions.
Keywords: Capillary liquid chromatography;
poly(ethylene oxide); polar compounds
ABSTRAK
Fasa
pegun terikat poli(etilena oksida) (PEO) telah disintesis melalui tindak balas
langkah tunggal dan sederhana. Poli(etilena glikol monometil eter p-toluena
sulfonat) (tosilated-PEO, berat molekul 900, n ≈ 18) secara kimia terikat
pada silika 3-aminopropil (TSKgel NH2-60, ukuran zarah 5 µm dan
diameter liang 60%). Fasa pegun yang disediakan dapat memisahkan sebatian kutub
seperti fenol dan nukleobes dalam kromatografi cecair kapilari. Pengekalan dan
pemisahan fenol dan nukleobes dapat dicapai dalam keadaan elusi isokratik.
Nukleobes seperti timin, adenin, urasil, uridin, sitidin dan toluena serta
fenol (fenol, pirokatekol, pirogalol) dipisahkan awal dalam masa kurang dari 6
minit menggunakan 98% asetonitril dan kurang dari 7 minit masing-masing
menggunakan 80% asetonitril. Kami menunjukkan bahawa pengekalan nukleobes
sebagai analit menurun dengan penurunan kepekatan eluen. Pengekalan sebatian polar
ini dipercayai berdasarkan interaksi ikatan dipol-dipol dan/atau hidrogen.
Kata
kunci: Kromatografi cecair kapilari;
polietilena oksida; sebatian kutub
RUJUKAN
Dier, T.K.F., Rauber, D., Jauch, J., Hempelmann, R.
& Volmer, D.A. 2017. Novel mixed-mode stationary phases for chromatographic
separation of complex mixtures of decomposed lignin. Chemistry Select 2: 779-786.
Faria, A.M., Collins, K.E. & Collins, C.H. 2006.
New stationary phases for high-performance liquid chromatography based on
poly(methyltetradecylsiloxane) thermally immobilized onto zirconized silica. Journal of Chromatography A 1122:
114-122.
Guo, Z., Liu, Y., Xu, J., Xu, Q., Xue, X., Zhang, F.,
Ke, Y., Liang, X. & Lei, A. 2008. Novel reversed-phase high-performance
liquid chromatography stationary phase with oligo(ethylene glycol) “click” to
silica. Journal of Chromatography A 1191:
78-82.
Guo, W., Chen, R., Liu, Y., Meng, M., Meng, X., Hu, Z.
& Song, Z. 2013. Preparation of ion-imprinted mesoporous silica SBA-15
functionalized with triglycine for selective adsorption of Co(II). Colloids and Surfaces A: Physicochemical and
Engineering Aspects 436: 693-703.
Imtakt. 2020. Scherzo SM-C18. https://www.imtaktusa.com/product/scherzo-sm-c18/.
Accessed on March 2020.
Jandera, P. & Hajek, T. 2009. Utilization of dual
retention mechanism on columns with bonded PEG and diol stationary phases for
adjusting the separation selectivity of phenolic and flavone natural
antioxidants. Journal of Separation
Science 32: 3603-3619.
Javadian, H., Koutenaei, B.B., Khatti, R. & Toosi,
M. 2017. Application of functionalized nano HMS type mesoporous silica with
N-(2-aminoethyl)-3-aminopropyl methyldimethoxysilane as a suitable adsorbent
for removal of Pb(II) from aqoeous media and industrial wastewater. Journal of Saudi Chemical Society 21:
219-230.
Jodeh, S., Amarah, J., Radi, S., Hamed, O., Warad, I.,
Salghi, R., Chetouni, A., Samhan, S. & Alkowni, R. 2016. Removal of
methylene blue from industrial wastewater in Palestine usingpolysiloxane
surface modified with bipyrazolic tripodal receptor. Moroccan Journal of Chemistry 4: 140-156.
Lim, L.W. 2015. Development of micro-flow-controlled
techniques and novel stationary phases in capillary liquid chromatography. Chromatography 36: 1-12.
Linda, R., Lim, L.W. & Takeuchi, T. 2013.
Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions
in capillary ion chromatography. Journal
of Chromatography A 1294: 117-121.
Polu, A.R. & Kumar, R. 2011. Impedance
spectroscopy and ftir studies of PEG–based polymer electrolytes. E-Journal of Chemistry 8: 347-353.
Radi, S., Tighadouini, S., Toubi, Y. & Bacquet, M.
2011. Polysiloxane surface modified with bipyrazolic tripodal receptor for
quantitative lead adsorption. Journal of
Hazardous Materials 185: 494-501.
Sun, M., Feng, J., Luo, L., Liu, X. & Jiang, S.
2013. Benzimidazole modified silica as a novel reversed-phase and
anion-exchangemixed-mode stationary phase for HPLC. Talanta 105: 135-141.
Takeuchi, T. & Ishii, D. 1981. High-performance
micro packed flexible columns in liquid chromatography. Journal of Chromatography A 213: 25-32.
Takeuchi, T., Oktavia, B. & Lim, L.W. 2009.
Poly(ethylene oxide)-bonded stationary phase for capillary ion chromatography. Analytical and Bioanalytical Chemistry 393: 1267-1272.
Wang, L., Wei, W., Xia, Z., Jie, X. & Xia, Z.Z.
2016a. Recent advances in materials for stationary phases of mixed-mode
high-performance liquid chromatography. Trends
in Analytical Chemistry 80: 495-506.
Wang, Q., Xu, L. & Xue, Y.W. 2016b. Preparation,
evaluation, and application of a novel reversed-phase/zwitterionic/hydrophilic
interaction liquid chromatographic mixed-mode stationary phase. Journal of Liquid Chromatography &
Related Technologies 39: 598-606.
Wei, Z., Fu, Q., Cai, J., Huan, L., Zhao, J., Shi, H.,
Jin, Y. & Liang, X. 2016. Evaluation and application of a mixed-mode
chromatographic stationary phase in two-dimensional liquid chromatography for
the separation of traditional Chinese medicine. Journal of Separation Science 39: 2221-2228.
Yusmaniar, Y., Darwis, D., Afrizal, A. & Annisa,
A. 2018. Synthesis of silica of rice husk modification (3-aminopropyl)
trietoxysilane for adsorption methylene blue. In The 3rd Annual Applied Science and Engineering Conference (AASEC), edited
by Rachid, B., Cherifa, B.Z., Vladimir, B., Heidi, G., Eric, L., Ming-Jung, Z.
& Zhein, Z. Bandung, Indonesia: MATEC
Web of Conferences, April 11, 2018. 197: 09009.
Zhang, F., Shen, G., Ji, S. & Yang, B. 2015.
Recent advances of stationary phases for hydrophilic interaction liquid
chromatography and ion chromatography. Journal
of Liquid Chromatography and Related Technologies 38: 349-352.
Zhang, X., Wu, W., Wang, J. & Tian, X. 2008.
Direct synthesis and characterization of highly ordered functional mesoporous
silica thin films with high amino-groups content. Applied Surface Science 254: 2893-2899.
*Pengarang untuk surat-menyurat; email:
rozalinda@gmail.com
|