Sains Malaysiana 50(11)(2021): 3263-3273
http://doi.org/10.17576/jsm-2021-5011-10
Hidrogel
Berasaskan Pektin Kulit Buah Naga (Hylocereus polyrhizus) sebagai Pembawa Ubat melalui
Sistem Penghantar Oral
(Pectin Based Hydrogel from Dragon Fruit Peels (Hylocereus
polyrhizus) as Drug Carrier via Oral Delivery System)
AZWAN MAT LAZIM1*, FARAHAIN MOKHTAR1,
KALAIVANI SANGER1, A. AZFARALARIFF1, IZWAN ISHAK1,
I. FAIZ MUSTAFA1, S.I. ZUBAIRI1, SHAZRUL FAZRY1,
RIZAFIZAH OTHAMAN1, MAZLAN MOHAMED2, NORHAKIMIN ABDULLAH2 & H. HISHAM HAMZAH3
1Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Fakulti Biokejuruteraan dan Teknologi (FBET), Universiti Malaysia Kelantan,
Kampus Jeli 17600 Jeli, Kelantan Darul Naim, Malaysia
3Pusat Pengajian Sains Kimia, Universiti Sains Malaysia,
11800 Pulau Pinang, Malaysia
Diserahkan: 21 Oktober
2020/Diterima: 4 Mac 2021
ABSTRAK
Kajian ini memfokuskan kepada aplikasi hidrogel berasaskan
ekstrak pektin daripada kulit buah naga (Hylocereus
polyrhizus) yang digunakan sebagai
biobahan pembawa ubat. Sebanyak 5 sampel telah disediakan dengan peratus
komposisi pektin yang berbeza (0%, 0.5%, 1.0%, 1.5%, 2.0%). Keputusan
menunjukkan hidrogel dengan 1.0% pektin telah mengembang secara maksimum pada
pH 7. Imej daripada mikroskop elektron pengimbas (SEM) mendapati saiz keporosan
hidrogel meningkat dengan penambahan
pektin. Potensi hidrogel sebagai agen pembawa ubat telah dilakukan dengan melihat
kecekapan muatan ubat, ujian perlepasan ubat dan ujian biodegradasi di dalam
saluran pencernaan menggunakan medium simulasi perut (SGF), usus (SIF) dan
kolon (SCF) secara in-vitro dengan kehadiran enzim. Hasil ujian ketoksikan menggunakan kaedah embrio ikan
kuda belang (Danio rerio) telah
memberikan keputusan yang negatif terhadap hidrogel yang diuji.
Kata kunci: Hidrogel; oral; pektin; pembawa ubat
ABSTRACT
This study focused on the application of pectin based
hydrogel extracted from pitaya peels (Hylocereus
polyrhizus) as a biomaterial for drug
carrier. Five different pectin extraction samples were prepared at a ratio of
0%, 0.5%, 1.0%, 1.5%, and 2.0%. Hydrogel with additional of 1.0% extracted
pectin showed the best swelling performance at pH 7. Scanning electron microscope
(SEM) images showed the porosity of hydrogel has increased by adding the
pectin. The potential of hydrogel as drug delivery was evaluated by drug
encapsulation efficiency and drug release profile tests in a simulated gastric
fluid (SGF), simulated intestine fluid (SIF) and simulated colon fluid (SCF)
without enzyme. In-vitro biodegradation tests were carried out using SGF, SIF and SCF in the presence of
the enzyme showed degradation of sample due to decomposition of pectin by
pectinase in the colon. The toxicity study using zebra fish embryo (Danio
rerio) gave a negative result towards the
hydrogel.
Keywords: Drug carrier; hydrogel; oral; pectin
RUJUKAN
Abdullah,
M.F., Azfaralariff, A. & Lazim, A.M. 2018. Methylene blue removal by using
pectin-based hydrogels extracted from dragon fruit peel waste using gamma and
microwave radiation polymerization techniques. Journal of Biomaterials Science, Polymer Edition 29(14):
1745-1763.
Adil Hakam, I. Abdul Rahman, M. Suzeren M.
Jamil, Rizafizah Othaman, M.C.I. Mohamad Amin
& Azwan Mat Lazim. 2015.
Removal of methylene blue dye in aqueous solution by sorption on a
bacterial-g-poly(acrylic acid) polymer network hydrogel. Sains Malaysiana 44(6): 827-834.
Airul Ashri, Nurul Amalina, Akhsan Kamil, Shazrul Fazry, M. Fareed Sairi, Muhammad Faizan Nazar & Azwan Mat Lazim. 2018. Modified Dioscorea hispida starch-based
hydrogels and their in-vitro cytotoxicity
study on small intestine cell line (FHS-74 Int). International Journal of Biological Macromolecules 107(Part B):
2412-2421.
Anekant, J., Yashwant, G. &
Sanjay, K.J. 2007. Perspectives of biodegradable natural polysaccharides for
site-specific drug delivery to the colon. J.
Pharm. Pharmaceutical Sci. 10(1): 86-128.
Azwan Mat Lazim, Farahain Mokhtar,
Siti Fairus Mohd Yusof, Ishak Ahmad & Adil Hakam. 2013. Synthesis and
characterization of ph sensitive hydrogel using extracted pectin from dragon
fruit peel. Malaysian Journal of Analytical Sciences 17(3): 481-489.
Deokar, M.D., Idage, S.B., Idage, B.B. & Sivaram, S.
2016. Synthesis and characterization of well‐defined random and block
copolymers of ε‐caprolactone with l‐lactide as an additive for
toughening polylactide: Influence of the molecular architecture. Journal of Applied Polymer Science 133(14).
Elliott, R., Greenberg, L.S. &
Lietaer, G. 2004. Research on experiential psychotherapies. In Bergin & Garfield’s Handbook of
Psychotherapy and Behaviour Change. 5th ed., edited by Lambert, M.J. New
York: Wiley. pp. 493-540.
Gao, X., He, C., Xiao, C., Zhuang,
X. & Chen, X. 2013. Biodegradable pH- responsive polyacrylic acid
derivative hydrogels with tunable swelling behavior for oral delivery of
insulin. Polymer 54(7): 1786-1793.
Hamman, J.H., Enslin, G.M. &
Kotze, A.F. 2005. Oral delivery of peptide drugs. BioDrugs 19: 165-177.
https://doi.org/10.2165/00063030-200519030-00003.
Hoffman, A.S. 2002. Hydrogels for
biomedical applications. Advanced Drug
Delivery Reviews 43: 3-12.
Korsmeyer, R.W., Gurny, R., Doelker,
E., Buri, P. & Peppas, N.A. 1983. Mechanisms of solute release from porous
hydrophilic polymers. International
Journal of Pharmaceutics 15(1): 25-35.
May, C.D. 1990. Industrial pectin:
Sources, production and applications. Carbohydrates
Polymer 12: 79-99.
Mizote, A., Odagir, H., Toei, K.
& Tanaka, K. 1975. Determination of residues of carboxylic acids (mainly
galacturonic acid) and their degree of esterification in industrial pectins by
colloid titration with Cat-Floc. Analyst 100: 822-827.
Mohd Fadzlanor Abdullah & Azwani
Mat Lazim. 2017. Study on swelling behaviour of hydrogel based on acrylic acid
and pectin from dragon fruit. AIP
Conference Proceedings 1614: 492. doi:10.1063/1.4895246.
Norhanisah Jamaludin & Azwan Mat
Lazim 2017. Sintesis dan pencirian hidrogel terbiodegradasi berasaskan bakteria
selulosa menggunakan teknik radiasi ultra lembayung. Malaysian Journal of Analytical Sciences 21(5): 1111-1119.
Nur Afiqah Mustafa Kamal, Tuan
Mazlelaa Tuan Mahmood, Ishak Ahmad & Suria Ramli. 2020. Improving rate of
gelatin/carboxymethylcellulose dissolving microneedle for transdermal drug
delivery. Sains Malaysiana 49(9):
2269-2279.
Pavia, D.L., Lampman, G.M. &
Kriz, G.S. 2001. Introduction to
Spectroscopy. Boston: Thomson Learning, Inc.
Prashant B. Sutar, Rakesh K.
Mishra, Kunal Pal & Ajit K. Banthia. 2008. Development of pH
sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery
system. J. Mater. Sci: Mater. Med.
19: 2247-2253. https:// doi.org/10.1007/s10856-007-3162-y.
Regina Sisika, A. Sonthanasamy,
Shazrul Fazry, Bohari M. Yamin & Azwan Mat Lazim. 2019. Surface
functionalization of highly luminescent carbon nanodots from Dioscorea hispida with polyethylene
glycol and branced polyethyleneimine and their in vitro study. Journal of
King Saud University - Science 31(4): 768-779.
Tang, P.Y., Wong, C.J. & Woo,
K.K. 2011. Optimization of pectin extraction from peel of dragon fruit (Hylocereus polyrhizus). Asian Journal of Biological Sciences 4(2): 189- 195.
Vityazev,
F.V., Fedyuneva, M.I., Golovchenko, V.V., Patova, O.A., Ipatova, E.U., Durnev,
E.A., Martinson, E.A. & Litvinets, S.G. 2017. Pectin-silica gels as
matrices for controlled drug release in gastrointestinal tract. Carbohydrate Polymers 157: 9-20.
Walter, R.H. 1991. The Chemistry and Technology of Pectin.
New York: Academic Press.
Xu, J., Strandman, S., Julian Zhu,
X.X., Barralet, J. & Cerruti, M. 2015. Genipin-crosslinked
catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterial 37: 395-404.
Yoshii, F., Zhao, L., Wach, R.A.,
Nagasawa, N., Mitomo, H. & Kume, T. 2003. Hydrogel of polysaccharide
derivatives crosslinked with irradiation at paste-like condition. Nuclear Instruments and Methods in Physics
Research (B) Beam Interactions with Materials & Atoms 208: 320-324.
Zhou, Y., Yang, D., Chen, X., Xu,
Q., Lu, F. & Nie, J. 2008. Electrospun water-soluble carboxyethyl
chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing
for skin regeneration. Biomacromolecules 9(1): 349-354.
*Pengarang untuk surat-menyurat;
email: azwanlazim@ukm.edu.my
|