Sains Malaysiana 50(11)(2021): 3303-3311
http://doi.org/10.17576/jsm-2021-5011-14
Downregulation of WNT8A, LRP5, LRP6 and FGF8 in
Malay Non-Syndromic Cleft Lip and/or Palate Patients
(Pengawalaturan Rendah WNT8A, LRP5, LRP6 dan FGF8 pada Pesakit Melayu Sumbing Bibir Bukan Sindrom dengan atau Tanpa Sumbing Lelangit)
NURUL SYAZANA MOHAMAD SHAH1*, WAN AZMAN WAN SULAIMAN1,
SARINA SULONG2 & AHMAD SUKARI HALIM3
1Reconstructive Science Unit, School
of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian,
Kelantan Darul Naim,
Malaysia
2Human Genome Centre, School of
Medical Sciences, Health Campus, Universiti Sains Malaysia
16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
3Director
Office, Hospital Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
Diserahkan: 23
September 2020/Diterima: 1 Mac 2021
ABSTRACT
Non-syndromic
cleft lip and/or palate (NSCL/P) is a one of the most common birth defects
occurs as a result of multi-factorial determinants such as genetic and
environmental factors. Genetic factor has been studying widely across different
population in identifying genes causing cleft defects. This study aims to
validate the role of fibroblast growth factors (FGFs) and signalling molecules Wingless-type (Wnt) to the occurrence of
cleft lip and/or palate among Malay population. Tissue skin was obtained from consented
NSCL/P patients who underwent the cleft lip repair operation at the upper lip
skin area and non NSCL/P individual was obtained from patient having traumatic
injury at the lip area as a control. Expression pattern of FGF8, FGF10, Wnt8a, and LRP5/6 were tested and
validated using Western Blot (WB) and quantitative Reverse Transcriptase-PCR (qRT-PCR). The fold change difference of FGF8 (0.614 ±
0.1012-fold), FGF10 (0.7188 ± 0.1017-fold) and Wnt8a protein (0.9051 ±
0.0142-fold) was downregulated by 1-fold in cleft lip (CL) tissues compared to
the normal meanwhile LRP5/6 protein (1.2201 ± 0.1404-fold) was found
upregulated by 1-fold. Validation testing confirmed that expression of FGF8 (p=0.014), Wnt8a (0.0762 ± 0.0227), LRP5 (0.3577 ± 0.1362) and LRP6 (0.3093 ±
0.2541) were significantly reduced in CL tissues compared to normal. This is
the first study identified defective regulation of Wnt8a, LRP5, LRP6 and FGF8 in NSCL/P among Malays. These novel findings clearly explained the
important role of growth factors FGF and Wnt signalling pathway in lip and palate formation during
craniofacial development.
Keywords:
Craniofacial; gene expression; non-syndromic cleft; protein
ABSTRAK
Sumbing bibir bukan sindrom dengan atau tanpa sumbing lelangit adalah salah satu kecacatan kelahiran yang berlaku disebabkan oleh pelbagai faktor seperti faktor genetik dan persekitaran. Kajian ke atas faktor genetik giat dijalankan terhadap pelbagai populasi berbeza dalam mengenal pasti gen-gen penyebab kecacatan sumbing. Kajian ini bertujuan untuk memvalidasi peranan faktor pertumbuhan ‘Fibroblast
growth factor’ (FGF) dan signal molekul ‘Wingless-type’ (Wnt) terhadap pembentukan sumbing bibir dengan atau tanpa lelangit dalam kalangan populasi Melayu. Tisu kulit diperoleh dengan kebenaran daripada pesakit sumbing yang mendapat rawatan pembedahan sumbing bibir dan individu bukan sumbing daripada pesakit yang mengalami kecederaan pada bahagian bibir sebagai kawalan. PengekspresanFGF8, FGF10, Wnt8a dan LRP5/6 diuji dan divalidasi menggunakan teknik ‘Western
Blot’ (WB) dan kuantitatif transkripsi berbalik-PCR’ (qRT-PCR).
Protein-protein FGF8 (0.614 ±
0.1012-fold), FGF10 (0.7188 ±
0.1017-fold) dan Wnt8a (0.9051 ±
0.0142-fold) pada tisu sumbing menunjukkan penurunan sebanyak sekali ganda berbanding normal manakala protein LRP5/6 (1.2201 ± 0.1404- fold) menunjukkan peningkatan sekali ganda. Ujian validasi mengesahkan penurunan ekspresiFGF8 (p=0.014), Wnt8a (0.0762 ± 0.0227), LRP5 (0.3577 ± 0.1362) dan LRP6 (0.3093 ± 0.2541) secara signifikan pada tisu sumbing berbanding normal. Kajian ini adalah yang pertama mengenal pasti kecacatan regulasiWnt8a, LRP5, LRP6 dan FGF8 pada NSCL/P dalam kalangan Melayu. Penemuan novel ini menjelaskan secara terperinci kepentingan peranan faktor pertumbuhan FGF dan laluan signal Wnt dalam pembentukan bibir dan lelangit ketika pembentukan kraniofasial.
Kata kunci: Ekspresi gen; kraniofasial; protein; sumbing bukan sindrom
RUJUKAN
Alappat, S.R., Zhang, Z.,
Suzuki, K., Zhang, X., Liu, H., Jiang, R., Yamada, G. & Chen, Y.
2005. The cellular and molecular etiology of the
cleft secondary palate in Fgf10 mutant mice. Developmental Biology 277(1):
102-113.
Bachler, M. & Neubüser, A. 2001.
Expression of members of the Fgf family and their receptors during midfacial development. Mechanisms of Development 100(2):
313-316.
Bejsovec, A. 2005. Wnt pathway activation: New relations and locations. Cell 120(1): 11-14.
Boo, N. & Arshad, A. 1990. A study of cleft lip and palate in
neonates born in a large Malaysian maternity hospital over a 2-year period. Singapore Medical Journal 31(1): 59-62.
Boyden, L.M., Mao, J.,
Belsky, J., Mitzner, L., Farhi,
A., Mitnick, M.A., Wu, D., Insogna, K. & Lifton, R.P. 2002. High bone
density due to a mutation in LDL–receptor–related protein 5. New England Journal of Medicine 346(20):
1513-1521.
Chiquet, B.T.
2011. Gene discovery in nonsyndromic cleft lip with
or without cleft palate. UT GSBS Dissertations and Theses (Open Access). Paper
131.
Culi, J. &
Mann, R.S. 2003. Boca, an endoplasmic reticulum protein required for wingless
signaling and trafficking of LDL receptor family members in Drosophila. Cell 112(3): 343-354.
Dailey, L., Ambrosetti, D., Mansukhani, A. & Basilico, C.
2005. Mechanisms underlying differential responses to Fgf signaling. Cytokine & Growth Factor Reviews 16(2):
233- 247.
Dale, R.M., Sisson, B.E. & Topczewski,
J. 2009. The emerging role of Wnt/Pcp signaling in organ formation. Zebrafish 6(1):
9-14.
Davidson, B.N. 2012. Examining cleft lip and palate as a lifelong
disease: Genetic investigation of causes and outcomes. Dissertation. University
of Iowa Health Care (Unpublished).
De Calisto, J., Araya, C., Marchant, L., Riaz, C.F. & Mayor, R.
2005. Essential role of non- canonical Wnt signalling in neural crest migration. Development 132(11): 2587-2597.
De Moerlooze, L., Spencer-Dene, B., Revest, J., Hajihosseini, M., Rosewell, I. & Dickson, C. 2000. An important role for
the IIIb isoform of fibroblast growth factor receptor
2 (FGFR2) in mesenchymal-epithelial signalling during
mouse organogenesis. Development 127(3):
483-492.
Fon Tacer,
K., Bookout, A.L., Ding, X., Kurosu,
H., John, G.B., Wang, L., Goetz, R., Mohammadi, M.,
Kuro-o, M., Mangelsdorf, D.J. & Kliewer, S.A.
2010. Research resource: Comprehensive expression atlas
of the fibroblast growth factor system in adult mouse. Molecular Endocrinology 24(10): 2050-2064.
Hsieh, J.C., Lee, L.,
Zhang, L., Wefer, S., Brown, K., DeRossi,
C., Wines, M.E., Rosenquist, T. & Holdener, B.C.
2003. Mesd encodes an Lrp5/6
chaperone essential for specification of mouse embryonic polarity. Cell 112(3): 355-367.
Lim, C.K., Halim, A.S., Zainol, I. & Noorsal, K. 2011. In
vitro evaluation of a biomedical- grade bilayer chitosan porous skin
regenerating template as a potential dermal scaffold in skin tissue
engineering. International Journal of
Polymer Science 2011: Article ID. 645820.
Little, R.D., Folz, C., Manning, S.P., Swain, P.M., Zhao, S.C., Eustace,
B., Lappe, M.M., Spitzer, L., Zweier,
S., Braunschweiger, K. & Benchekroun,
Y. 2002. A mutation in the LDL receptor–related protein
5 gene results in the autosomal dominant high–bone-mass trait. The American Journal of Human Genetics 70(1):
11-19.
Liu, W. & Foley, A.C. 2011. Signaling pathways in early cardiac
development. Wiley Interdisciplinary
Reviews: Systems Biology and Medicine 3(2): 191-205.
Logan, C.Y. & Nusse, R. 2004. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20: 781-810.
Mangold, E., Reutter, H., Birnbaum, S., Walier,
M., Mattheisen, M., Henschke,
H., Lauster, C., Schmidt, G., Schiefke,
F., Reich, R.H. & Scheer, M. 2009. Genome-wide linkage scan of nonsyndromic orofacial clefting in 91 families of central European origin. American
Journal of Medical Genetics Part A 149(12): 2680-2694.
Meng, T., Shi, J.Y.,
Wu, M., Wang, Y., Li, L., Liu, Y., Zheng, Q., Huang, L. & Shi, B. 2012.
Overexpression of mouse TTF‐2 gene causes cleft palate. Journal of Cellular and Molecular Medicine 16(10):
2362-2368.
Niemann, S., Zhao, C., Pascu, F., Stahl, U., Aulepp, U., Niswander, L., Weber, J.L. & Müller, U. 2004. Homozygous
Wnt3 mutation causes tetra-amelia in a large
consanguineous family. The American
Journal of Human Genetics 74(3): 558-563.
Nusse, R. 2005. Wnt signaling in disease and in development. Cell Research 15(1): 28-32.
Nie, X., Luukko, K. & Kettunen, P.
2006. Fgf signalling in craniofacial development and developmental
disorders. Oral Diseases 12(2):
102-111.
Ohuchi, H., Hori, Y., Yamasaki, M., Harada, H., Sekine,
K., Kato, S. & Itoh, N. 2000. Fgf10 acts as a major ligand for Fgf receptor 2 IIIb in mouse
multi-organ development. Biochemical and
Biophysical Research Communications 277(3): 643-649.
Ornitz, D.M. &
Itoh, N. 2001. Fibroblast growth factors. Genome
Biol. 2(3): 1-12.
Pauws, E. &
Stanier, P. 2007. Fgf signalling and sumo modification: New players in the aetiology of cleft lip and/or palate. TRENDS in Genetics 23(12): 631-640.
Rice, R., Spencer-Dene, B., Connor, E.C., Gritli-Linde,
A., McMahon, A.P., Dickson, C. & Rice, D.P. 2004. Disruption of Fgf10/Fgfr2b-coordinated
epithelial-mesenchymal interactions causes cleft palate. Journal of Clinical Investigation 113(12): 1692.
Riley, B.M., Mansilla, M.A., Ma, J., Daack-Hirsch, S., Maher, B.S., Raffensperger,
L.M. & Mohammadi, M. 2007. Impaired Fgf signaling
contributes to cleft lip and palate. Proceedings
of the National Academy of Sciences 104(11): 4512-4517.
Sakaue, H., Konishi, M., Ogawa, W., Asaki,
T., Mori, T., Yamasaki, M. & Kasuga, M. 2002.
Requirement of fibroblast growth factor 10 in development of white adipose
tissue. Genes & Development 16(8):
908-912.
Sasaki, S., Miyake, A., Ohta, H., Konishi, M., Itoh, N. & Nakajima, Y. 2011. The Fgf Family in
Humans, Mice, and Zebrafish: Development, Physiology, and Pathophysiology:
INTECH Open Access Publisher.
Shah, N.S.M., Salahshourifar, I., Sulong, S., Sulaiman, W.A.W. & Halim, A.S. 2016. Discovery of
candidate genes for nonsyndromic cleft lip palate
through genome-wide linkage analysis of large extended families in the Malay
population. BMC Genetics 17(1):
1-9.
Shaw, G.M., Croen, L.A. & Curry, C.J.
1991. Isolated oral cleft malformations: Associations with maternal and infant
characteristics in a California population. Teratology 43(3): 225-228.
Snyder-Warwick, A.K., Perlyn, C.A., Pan,
J., Yu, K., Zhang, L. & Ornitz, D.M. 2010.
Analysis of a gain-of-function FGFR2 crouzon mutation
provides evidence of loss of function activity in the etiology of cleft Palate. Proceedings of the National Academy of
Sciences 107(6): 2515-2520.
Song, L., Li, Y., Wang,
K., Wang, Y.Z., Molotkov, A., Gao, L., Zhao, T., Yamagami, T., Wang, Y., Gan, Q. & Pleasure, D.E. 2009. Lrp6-mediated canonical Wnt signaling is
required for lip formation and fusion. Development 136(18): 3161-3171.
Sperber, G.H. 2002. Craniofacial embryogenesis: Normal developmental
mechanisms. In Understanding Craniofacial
Anomalies, edited by Mooney, M.P. & Siegel, M.I. Wiley Online Library.
pp. 29-59.
Sun, X., Meyers, E.N., Lewandoski, M.
& Martin, G.R. 1999. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse
embryo. Genes & Development 13(14):
1834-1846.
Tamai, K., Semenov, M.,
Kato, Y., Spokony, R., Liu, C., Katsuyama,
Y., Hess, F., Saint-Jeannet, J.P. & He, X. 2000. LDL-receptor-related proteins in Wnt signal transduction. Nature 407(6803):
530-535.
Veeman, M.T.,
Axelrod, J.D. & Moon, R.T. 2003. A second canon: Functions and mechanisms
of Β-catenin-independent Wnt signaling. Developmental Cell 5(3): 367-377.
Weng, M., Chen, Z., Xiao, Q., Li, R. & Chen, Z. 2018. A review
of Fgf signaling in palate development. Biomedicine
& Pharmacotherapy 103: 240-247.
Yamaguchi, T.P., Bradley, A., McMahon, A.P. & Jones, S. 1999. A
Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate
embryo. Development 126(6):
1211-1223.
*Pengarang untuk surat-menyurat;
email: syazanashah@usm.my
|