Sains Malaysiana 50(11)(2021): 3333-3344

http://doi.org/10.17576/jsm-2021-5011-17

 

 

The Potential of Snail Seromucous and Chitosan as Bioimunomodulator for Tuberculosis Therapy

(Potensi Seromukus Siput dan Kitosan sebagai Bioimunopemodulat untuk Terapi Tuberkulosis)

 

YUSUP SUBAGIO SUTANTO1*, MAGDALENA SUTANTO2, AGNES SRI HARTI3 & NONY PUSPAWATI4

 

1Pulmonary Disease Study Program, Faculty of Medicine, Sebelas Maret University of Surakarta, Ir. Sutami No. 56 A, Surakarta, Central of Java, Indonesia

 

2District General Hospital of Surakarta City, Lettu Sumarto No. 1 Str, Surakarta, Central of Java, Indonesia

 

3Department of Nursing, Faculty of Health Science, Kusuma Husada University of Surakarta, Jaya Wijaya No. 11, Surakarta, Central of Java, Indonesia

 

4Department of Medical Laboratory Technical Analyst, Faculty of Health Science, Setia Budi University of Surakarta, Let. Jen. Sutoyo, Surakarta, Central of Java, Indonesia

 

Diserahkan: 1 Februari 2021/Diterima: 15 Mac 2021

 

ABSTRACT

Tuberculosis (TB) as a global emergency is a chronic disease caused by Mycobacterium tuberculosis (Mtb). Mtb plays an important role in inducing or suppressing the production of Interferon Gamma (IFNG) and IL-4 in the regulation of TB homeostasis and pathogenesis. The bioactive compounds of the snail seromucous (Achatina fulica Ferussac) and chitosan function as biological response modifiers. The study aimed to determine the potential effectiveness of snail seromucous and chitosan as bio-immunomodulator for TB therapy. The research method was based on the results of laboratory experiments with the physic-chemical, biochemical, microbiological examination, snail seromucous protein profile, lymphocyte proliferation, measurement of IFNG, and IL-4 levels. The results of the physic-chemical examination of the snail seromucous showed a specific gravity of 1.010; pH 8, glucose 16 mg/dL; cholesterol 9 mg/dL; protein 2.8 mg/dL and heavy metals (Pb, Cu, Hg, Al) negative. The results of microbiological tests showed that a 100% concentration of snail seromucous was antimicrobial against Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa. The protein profile of snail seromucous shows that there are 3 protein subunits, namely the range 55 - 72 kDa and 1 specific protein sub-unit 43 kDa as a bioactive compound achasin sulfate. Addition of chitosan dose of 65 µg/mL; snail seromucous dose of 65 µg/mL and a mixture of chitosan (65 µg/mL): snail seromucous (65 µg/mL) ratio 1: 1, can increase lymphocyte proliferation; optimum levels of IFN-γ and IL-4. Snail seromucous and chitosan are effective immunomodulators and potential candidates for TB therapy.

 

Keywords: Chitosan; IFNG; IL-4; immunomodulator; Mtb; snail seromucous

 

ABSTRAK

Tuberkulosis (TB) ialah penyakit kronik kecemasan global yang disebabkan oleh Mycobacterium tuberculosis (Mtb). Mtb memainkan peranan penting dalam menekan pengeluaran Interferon Gamma (IFNG) dan IL-4 untuk pengaturan homeostasis TB dan patogenesis. Sebatian bioaktif seromukus siput (Achatina fulica Ferussac) dan kitosan berfungsi sebagai pengubah tindak balas biologi. Objektif kajian ini adalah untuk menentukan potensi keberkesanan seromukus siput dan kitosan sebagai bioimunopemodulat untuk terapi TB. Kaedah penyelidikan berdasarkan hasil makmal uji kaji dengan tahap penyelidikan fizikokimia, biokimia, pemeriksaan mikrobiologi, profil protein seromukus siput, aktiviti imunopemodulat seromukus siput dan kitosan, percambahan limfosit, pengukuran tahap IFNG dan IL-4. Hasil pemeriksaan fizik-kimia seromukus siput menunjukkan graviti khusus 1.010; pH 8, glukosa 16 mg/dL; kolesterol 9 mg/dL; protein 2.8 mg/dL dan logam berat (Pb, Cu, Hg, Al) negatif. Hasil ujian mikrobiologi menunjukkan bahawa kepekatan seromukus siput 100% adalah antimikrob terhadap Staphylococcus aureus, Candida albicans dan Pseudomonas aeruginosa. Profil protein kaedah SDS-PAGE menunjukkan bahawa terdapat 3 sub-unit protein berkisar 55 - 72 kDa dan 1 sub-unit protein khusus 43 kDa sebagai sebatian bioaktif achasin sulfat. Kitosan (65 ug/mL); lendir siput (65 µg/mL) dan campuran kitosan (65 µg/mL) dengan lendir siput (65 µg/mL) nisbah 1: 1, dapat meningkatkan percambahan limfosit juga tahap optimum IFN-γ dan IL- 4. Seromukus siput dan kitosan adalah imunopemodulat yang mengagumkan dan calon yang berpotensi untuk terapi TB.

 

Kata kunci: IFNG; IL-4; imunopemodulat; kitosan; Mtb; seromukus siput

 

RUJUKAN

Abbas Abul, K., Lichman, A.H.H. & Shiv Pillai. 2014. Effector mechanisms of T cell-mediated immunity functions of T cells in host defense. Basic Immunology: Functions and Disorders of the Immune System. Philadelphia USA: Elsevier Saunders.

Benkendorff, K., Rudd, D., Nongmaithem, B.D., Liu, L., Young, F., Edwards, V., Avila, C. & Abbott, C.A. 2015. Are the traditional medical uses of muricidae molluscs substantiated by their pharmacological properties and bioactive compounds? Mar. Drugs 13: 5237-5275.

Bislimi, K., Behluli, A., Halili, J., Mazreku, I., Osmani, F. & Halili, F. 2013. Comparative analysis of some biochemical parameters in emolymph of garden snail (Helix pomatia L.) of the Kastriot and Ferizaj Regions, Kosovo. International Journal of Engineering and Applied Sciences 4(6): 11-18.

Bonnemain, B. 2005. Helix and drugs: Snails for Western health care from antiquity to the present. Evid. Based Complement Alternat. Med. 2(1) 25-28.

Dang, V.T., Benkendorff, K., Green, T. & Speck, P. 2015. Marine snails and slugs: A great place to look for antiviral drugs. J. Virol. 89(16): 8114-8118.

Deretic, V., Delgado, M., Vergne, I., Master, S., De Haro, S., Ponpuak, M. & Singh, S. 2009. Autophagy in immunity against mycobacterium tuberculosis: A model system to dissect immunological roles of autophagy. Curr. Top Microbiol. Immunol. 335: 169-188.

Dolashka, P., Dolashki, A., Velkova, L., Stevanovic, S., Molin, L., Traldi, P., Velikova, R. & Voelter, W. 2015. Bioactive compounds isolated from garden snails. J. BioSci. Biotechnol. SE/ONLINE: 147-155.

Dolashka, P., Dolashki, A., Voelter, W., Van Beeumen, J. & Stevanovic, S. 2014. Antimicrobial activity of peptides the hemolymph of Helix lucorum snails. J. of Pept. Science 20: S268.

El Mubarak, M.A., Lamari, F.N. & Kontoyannis, C. 2013. Simultaneous determination of allantoin and glycolic acid in snail mucus and cosmetic creams with high performance liquid chromatography and ultraviolet detection. J. Chromatogr. A 1322: 49-53.

Etim, L.B., Chuku, A. & Godwin, A.O. 2015. Antibacterial properties of snail mucus on bacteria isolated from a patient with wound infection. British Microbiology Research Journal 11(2): 1-9.

Greistorfer, S., Waltraud, K., Norbert, C., Andreas, G., Livia, R., Johannes, S. & von Byern, J. 2017. Snail mucus - glandular origin and composition in Helix pomatia. Zoology 122: 126-138.

Gustiani, N., Parwati, I., Tjandrawati, A. & Lismayanti, L. 2014. Validity of complex specific antigen mycobacterium tuberculosis region of difference 1-3 examination using rapid immunochromatography method in pulmonary tuberculosis patient sputum. MKB 46(4): 241-246.

Harti, A.S., Puspawati, N. & Putriningrum, R. 2019. Antimicrobial bioactive compound of seromucous as biological response modifiers immunostimulator. Microbiology Indonesia 13(3): 56-63. 

Harti, A.S., Atiek Murharyati, S. Dwi Sulisetyawati & Meri Oktariani. 2018. The effectiveness of snail mucus (Achantina fulica) and chitosan towards limfosit proliferation in vitro.  Asian Journal Pharmaceutical and Clinical Research 11(Special Issue 3): 85-88. 

Harti, A.S., S. Dwi Sulisetyawati, Atiek Murharyati, Meri Oktariani & Ika Budi Wijayanti. 2016. The effectiveness of snail slime and chitosan in wound healing. International Journal of Pharma Medicine and Biological Science 5(1): 76-80.

Ibrahim, K., El-Eswed, B., Abu-Sbeih, K., Arafat, T., Omari, M.A., Darras, F. & Badwan, A.A. 2016. Preparation of Chito-oligomers by hydrolysis of chitosan in the presence of zeolite as adsorbent. Mar. Drugs 14(8): 43.

Levinson, W. & Jawetz, E. 2003. Medical Microbiology and Immunology Examination and Board Review. Singapore: McGraw-Hill.

Nantarat, N., Tragoolpua, Y. & Gunama, P. 2019. Antibacterial activity of the mucus extract from the giant african snail (Lissachatina fulica) and golden apple snail (Pomacea canaliculata) against pathogenic bacteria causing skin diseases. Tropical Natural History Chulalongkorn University 19(2): 103-112.

Nisha Singh, Pallavi Kansal, Zeeshan Ahmad, Navin Baid, Hariom Kushwaha, Neeraj Khatri & Ashwani Kumar 2018. Antimycobacterial effect of IFNG (interferon-gamma)- induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 14(6): 972-991.

Rovetta, A.I., Peña, D., Hernández Del Pino, R.E., Recalde, G.M., Pellegrini, J., Bigi, F., Musella, R.M., Palmero, D.J., Gutierrez, M., Colombo, M.I. & García, V.E. 2014. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy 10(12): 2109-2121.

Sallam, A.A., El-Massry, S.A. & Nasr, I.N. 2009. Chemical analysis of mucus from certain land snails under Egyptian conditions. Archives of Phytopathology and Plant Protection 42(9): 874-881.

Sudiana, I.K. 2014. Imunopatobiologi Molekuler. Surabaya: Airlangga University Press (AUP).

Sutanto, Y.S., Reviono, R., Aphridasari, J., Ramlie, A. & Kurniawan, H. 2021. The effect of ginsenoside 4% on inflammation, bacteremia and clinical improvement in community-acquired pneumonia patients. SRP 12(1): 686-691.

Suwannatri, K., Aiporn, S., Paitra, T., Jariya, U.W., Sirikachorn, T., Cinzia, C., Jason, M., Smarn, T., Alex, L. & Javier, S. 2016. Differential protein expression in the hemolymph of Bithynia siamensis goniomphalos infected with Opisthorchis viverrini. PLOS Neglected Tropical Disease 2016: 1-20.

Vieira, T.C.R.G., Costa Filho, A., Salgado, N.C., Allodi, S., Valente, A.P., Nasciutti, L.E. & Silva, L.C. 2004. Acharan sulfate, the new glycosaminoglycan from Achatina fulica Bowdich 1822. Structural heterogeneity, metabolic labeling and localization in the body, mucus and the organic shell matrix. European Journal of Biochemistry 271: 845-854.

Ulagesan, S. & Kim, H.J. 2018. Antibacterial and antifungal activities of proteins extracted from seven different snails. Applied Sciences 8(8): 1362.

WHO. 2014. Global Tuberculosis Report. WHO Press.

Zhong, J., Wang, W., Yang, X., Yan, X. & Liu, R. 2013. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39: 1-5.

Zhuang, J., Coates, C.J., Zhu, H., Zhu, P., Wu, Z. & Xie, L. 2015. Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Developmental and Comparative Immunology 49: 96-102.

 

*Pengarang untuk surat-menyurat; email: yusupsubagiosutanto@gmail.com

 

   

 

 

sebelumnya