Sains
Malaysiana 50(11)(2021): 3395-3404
http://doi.org/10.17576/jsm-2021-5011-23
Performance Evaluation of PDMS or PEBAX- Coated
Polyetherimide Membrane for Oxygen/Nitrogen Separation
(Penilaian Prestasi PDMS atau PEBAX- Bersalut Membran
Polieterimida untuk Pemisahan Oksigen/Nitrogen)
KOK CHUNG CHONG1*,
SOON ONN LAI1, HUI SAN THIAM1, SHEE KEAT MAH1,
WOEI JYE LAU2 & AHMAD FAUZI ISMAIL2
1Department of Chemical
Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti
Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000
Kajang, Selangor Darul Ehsan, Malaysia
2Advanced Membrane Technology Research Centre (AMTEC),
Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia
Diserahkan: 25 Mei 2020/Diterima: 8 Mac 2021
ABSTRACT
Since the industrial revolution era, the Earth was suffering
from serious air pollution. Millions of people are now suffering from indoor
air pollution related diseases, especially in the industrialized countries such
as China. One method to improve the indoor air quality is by oxygen
enhancement. Membrane technology has been a key research over the past decades
due to its low energy usage, minimum chemical consumption as well as small
setting up layout. In this study, polyetherimide (PEI) membranes coated with
polydimethylsiloxane (PDMS) or poly(ether block amide) (PEBAX) at different
concentration (1, 3 or 5 wt%) were used to evaluate the oxygen/nitrogen gas
separation. Prior to the gas permeation study, the membranes were characterized
using scanning electron microscope (SEM) for morphology observation and surface
elemental analysis by energy dispersive X-ray spectroscope (EDX). The
morphology of the self-fabricated PEI membranes is composed of a thin and dense
structure supported by the finger-like structure. The results obtained from
oxygen/nitrogen separation studies shows membrane coated with 3 wt% PDMS yield
a good separation results, exhibiting an improvement of oxygen and nitrogen
permeance by 28.2% and 24.9%, selectivity by 10.4% (up to 5.08) relative to the
base PEI membrane. Meanwhile, the 3 wt% PEBAX-coated PEI membrane only achieved
selectivity of 3.56. The PDMS-coated PEI membrane yield a better separation
performance attributed to the fact that PDMS coating on the hollow fiber
membrane improve the surface morphology by reducing the defects.
Keywords: Gas separation; nitrogen; oxygen;
polydimethylsiloxane; polyetherimide; poly(ether block amide)
ABSTRAK
Sejak era revolusi perindustrian, Bumi mengalami pencemaran
udara yang serius. Berjuta-juta orang kini menderita penyakit berkaitan
pencemaran udara dalaman, terutamanya mereka yang tinggal di negara
perindustrian seperti China. Salah satu kaedah untuk meningkatkan kualiti udara
dalaman adalah dengan peningkatan oksigen. Teknologi membran telah menjadi
penyelidikan utama selama beberapa dekad yang lalu kerana penggunaan tenaga
yang rendah, kadar penggunaan bahan kimia yang minimum dan menggunakan ruang
yang kecil. Dalam kajian ini, membran polieterimida (PEI) yang disalut dengan
polidimetilsiloksan (PDMS) atau poli(eter blok amida) (PEBAX) pada kepekatan
yang berbeza (1, 3 atau 5 wt%) digunakan untuk menilai pemisahan gas
oksigen/nitrogen. Sebelum kajian penelapan gas, membran dicirikan menggunakan
mikroskop elektron imbasan (SEM) untuk pemerhatian morfologi dan analisis unsur
permukaan dengan spektroskopi sinar-X penyebaran tenaga (EDX). Morfologi
membran PEI buatan sendiri terdiri daripada struktur nipis dan padat yang
disokong oleh struktur seperti jari. Hasil penyerapan gas menunjukkan bahawa
membran yang dilapisi dengan 3% PDMS adalah membran yang terbaik dengan kadar
peningkatan oksigen dan nitrogen sebanyak 28.2% dan 24.9% serta peningkatan
kepilihan sebanyak 10.4% (hingga 5.08) berbanding dengan membran PEI yang tidak
bersalut. Sementara itu, membran PEI bersalut PEBAX 3% hanya mencapai kepilihan
sebanyak 3.56. Membran PEI yang disalut PDMS menghasilkan prestasi pemisahan
yang lebih baik disebabkan oleh fakta bahawa lapisan PDMS dapat memperbaiki morfologi
permukaan membran dengan mengurangkan kecacatan.
Kata kunci: Nitrogen;
oksigen; pemisahan gas; polieterimida; polidimetilsiloksan; poli(eter blok
amida)
RUJUKAN
Al-Horr, Y., Arif, M., Katafygiotou, M., Mazroei, A.,
Kaushik, A. & Elsarrag, E. 2016. Impact of indoor environmental quality on
occupant well-being and comfort: A review of the literature. International Journal of Sustainability
Built Environment 5(1): 1-11.
Baskar, P. & Senthilkumar, A. 2016. Effects of oxygen
enriched combustion on pollution and performance characteristics of a diesel
engine. International Journal of
Science and Technology 19(1): 438-443.
Belaissaoui, B., Le Moullec, Y., Hagi, H. & Favre, E.
2014. Energy efficiency of oxygen enriched air production technologies:
Cryogeny vs membranes. Energy
Procedia 63: 497-503.
Chong, K.C., Lai, S.O., Lau, W.J., Thiam, H.S., Ismail, A.F.
& Roslan, R.R. 2018. Preparation, characterization, and performance
evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS coating for
oxygen enhancement process. Polymers 10(2): 126.
Chong, K.C., Lai, S.O., Lau, W.J., Thiam, H.S., Ismail, A.F.
& Zulhairun, A.K. 2017. Fabrication and characterization of polysulfone
membranes coated with polydimethysiloxane for oxygen enrichment. Aerosol Air Quality Research 17(11):
2735-2742.
Chong, K.C., Lai, S.O., Lee, K.M., Lau, W.J., Ismail, A.F.
& Ooi, B.S. 2014. Characteristic and performance of polyvinylidene fluoride
membranes blended with different additives in direct contact membrane
distillation. Desalination Water
Treatment 54(12): 3218-3226.
Esposito, E., Clarizia, G., Bernardo, P., Jansen, J.,
Sedláková, Z. & Izák, P. 2015. Pebax®/PAN hollow fiber membranes for CO2/CH4 separation. Chemical Engineering
Process 94: 53-61.
Gordon, S., Mortimer, K., Grigg, J. & Balmes, J. 2017.
In control of ambient and household air pollution - how low should we go? Lancet Respiratory Medicine 17: 1-2.
Jamil, N., Othman, N.H., Shahrudin, M.Z., Razlan, M.R.M.,
Alias, N.H., Marpani, F., Lau, W.J., Goh, P.S. & Ismail, A.F. 2020. Effects
of PEBAX coating concentrations on CO2/CH4 separation of
RGO/ZIF-8 PES membranes. Jurnal Teknologi 82(2): 51-60.
Karar, H.W. & Hamdi, A. 2016. Analysis of the factors
that affect medical oxygen demand an empirical study at government Hospitals in
Khartoum State. IOSR Journal of
Mathematics 12: 22-26.
Khalilinejad, I., Sanaeepur, H. & Kargari, A. 2015.
Preparation of poly(ether-6-block amide)/PVC thin film composite membrane for
CO2 separation: Effect of top layer thickness and operating
parameters. Journal of Membrane
Science Research 1: 124-129.
Khayet, M., García-Payo, M., Qusay, F. & Zubaidy, M.
2009. Structural and performance studies of poly(vinyl chloride) hollow fiber
membranes prepared at different air gap lengths. Journal of Membrane Science 330(1-2): 30-39.
Kim, K., Ingole, P., Kim, J. & Lee, H. 2013. Separation
performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas. Chemical Engineering
Journal 233: 242-250.
Liu, L., Chakma, A. & Feng, X. 2005. CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite
membranes. Industrial &
Engineering Chemical Research 44(17): 6874-6882.
Moaddeb, M. & Koros, W. 1997. Occlusion of pores of
polymeric membranes with colloidal silica. Journal of Membrane Science 136(1-2): 273-277.
Moradi, M., Pourafshari, C.M., Noie, S., Hesampour, M. &
Mänttäri, M. 2017. PDMS coating of used TFC-RO membranes for O2/N2 and CO2/N2 gas separation applications. Polymer Testing 63: 101-109.
Pokhrel, J., Bhoria, N., Anastasiou, S., Tsoufis, T.,
Gournis, D., Romanos, G. & Karanikolos, N. 2018. CO2 adsorption
behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene
oxide composites under dry and wet conditions. Microporous and Mesoporous Materials 267: 53-67.
Rackley, S.A. 2010. Carbon
Capture and Storage. 1st ed. Massachusetts: Butterworth-Heinemann.
Rezaei, A.M., Ismail, A.F., Matsuura, T., Ng, B. &
Abdullah, M. 2015. Fabrication and characterization of porous
polyetherimide/montmorillonite hollow fiber mixed matrix membranes for CO2 absorption via membrane contactor. Chemical
Engineering Journal 269: 51-59.
Robeson, L. 2008. The upper bound revisited. Journal of Membrane Science 320(1-2):
390-400.
Robeson,
L., Liu, Q., Freeman, B. & Paul, D. 2015. Comparison of transport
properties of rubbery and glassy polymers and the relevance to the upper bound
relationship. Journal of Membrane
Science 476: 421-431.
Sanders, D., Smith, Z., Guo, R., Robeson, L., McGrath, J.
& Paul, D. 2013. Energy-efficient polymeric gas separation membranes for a
sustainable future: A review. Polymer 54(18):
4729-4761.
Santos, J., Cruz, P., Regala, T., Magalhães, F. &
Mendes, A. 2007. High-purity oxygen production by pressure swing
adsorption. Industrial &
Engineering Chemistry Research 46(2): 591-599.
Sircar, S. & Kratz, W. 1989. Oxygen production by
pressure swing adsorption. Separation
Science and Technology 24(5-6): 429-440.
Smith, A. & Klosek, J. 2001. A review of air separation
technologies and their integration with energy conversion processes. Fuel Process Technology 70(2):
115-134.
Wahab, M., Ismail, A.F. & Shilton, S. 2012. Studies on
gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix
membranes using nanosized fumed silica as fillers. Separation and Purification Technology 86: 41-48.
Wang, D. 2000. Porous PVDF asymmetric hollow fiber membranes
prepared with the use of small molecular additives. Journal of Membrane Science 178(1-2): 13-23.
Wang, D., Li, K. & Teo, W. 1998. Preparation and
characterization of polyetherimide asymmetric hollow fiber membranes for gas
separation. Journal of Membrane
Science 138(2): 193-201.
Wang, L., Li, Y., Li, S., Ji, P. & Jiang, C. 2014.
Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry 23(6):
717-725.
Zhou, Y., Chen, W., Wang, P. & Zhang, Y. 2018. Dense and
thin 13X membranes on porous α-Al2O3 tubes:
Preparation, structure and deep purification of oxygenated compounds from
gaseous olefin flow. RSC Advance 8(25): 13728-13738.
Zuo, J., Ji, W., Ben, Y., Hassan, M., Fan, W. & Bates,
L. 2018. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing. Environmental Pollution 240: 839-847.
*Pengarang untuk surat-menyurat; email:
chongkc@utar.edu.my
|