| Sains
          Malaysiana 50(12)(2021): 3493-3503
          
         http://doi.org/10.17576/jsm-2021-5012-03
            
           
             
           Determination
            of the Heavy Metal Contents and the Benefit/Cost Analysis of Hypericum salsugineum in the Vicinity of
            Salt Lake
  
           (Penentuan
            Kandungan Logam Berat dan Analisis Faedah/Kos Hypericum salsugineum di Sekitar Salt Lake)
            
           
             
           AYNUR DEMIR*1, GÖKÇEN
            BAYSAL FURTANA2, MEHTAP TEKŞEN3 & RUKIYE
            TIPIRDAMAZ4
            
 
             
           1Department of Urbanization and Environmental Problems,
            Faculty of Economics and Administrative Sciences, Aksaray University, 68100
            Aksaray, Turkey
            
           
             
           2Department of Biology, Faculty of Science, Gazi University,
            06500 Ankara,Turkey
            
           
             
           3Department of Biology, Faculty of Science and Letters,
            Aksaray University, 68100 Aksaray, Turkey
            
           
             
           4Department of Biology, Faculty of
            Science, Hacettepe University, 06800 Ankara, Turkey
            
           
             
           Diserahkan:
            14 April 2020/Diterima: 21 April 2021
            
           
             
           ABSTRACT
            
           In this study, Hypericum
            salsugineum, an endemic halophytic plant
              growing around Salt Lake, was analyzed to determine the heavy metals (chromium,
              lead, copper, zinc and nickel) on it and on the soil it grew. The
              phytoremediation potential of H. salsugineum was evaluated. In addition, the benefit cost (B/C) analysis was
                performed for its potential use in phytoremediation. The plant and soil samples were collected from Eskil and
                Cihanbeyli between May and September in 2016. A total of 300 soil and plant
                samples were analysed for heavy metal content. Statistical and standard
                benefit/cost analyses were performed for assessment. The capacity of
                accumulating the aforementioned heavy metals was found to be high in H.
            salsugineum. It was found that Ni and Pb
              ratio exceeded optimum values in its habitat, and H. salsugineum accumulated available Ni and Pb. When the
                plant was evaluated in terms of benefit/cost, B/C ratio was greater than 1
                during the useful life of the study. This conclusion increases the ecological
                and economical values of H. Salsugineum,
                  effecting its potential use in phytoremediation.
  
 
             
           Keywords: Economic
            value analysis; halophyte; Hypericum salsugineum; phytoremediation; Salt Lake
  
 
             
           ABSTRAK
            
           Dalam kajian ini, Hypericum
            salsugineum, sejenis tumbuhan halofit
              endemik yang tumbuh di sekitar Salt Lake telah dianalisis untuk menentukan
              kandungan logam berat (kromium, plumbum, kuprum, zink dan nikel) padanya dan
              pada tanah tempat ia tumbuh. Potensi fitopemulihan H. salsugineum juga telah dinilai. Selain itu, analisis
                nisbah faedah/kos (F/K) telah dilakukan untuk potensi kegunaan dalam
                fitopemulihan. Sampel tumbuhan dan tanah telah dikumpul daripada Eskil dan
                Cihanbeyli antara Mei dan September 2016. Sejumlah 300 sampel-sampel tanah dan
                tumbuhan telah dianalisis untuk kandungan logam berat. Analisis statistik dan
                analisis Piawai Faedah/Kos telah dilakukan sebagai penaksiran. Kapasiti
                pengumpulan logam berat tersebut telah diperoleh dalam jumlah yang tinggi di
                dalam H. salsugineum. Nisbah Ni dan
                  Pb didapati telah melebihi nilai optimum dalam habitat dan kandungan yang
                  dikumpul daripada H. salsugineum.
                    Apabila tumbuhan ini dinilai berdasarkan faedah/kos, nisbah (F/K) telah
                    menunjukkan nilai yang lebih besar daripada 1 sepanjang kajian dijalankan.
                    Rumusan ini  menambah nilai ekologi dan ekonomi H. salsugineum, yang seterusnya memberi kesan kepada potensinya untuk digunakan dalam
                      fitopemulihan.
                    
 
             
           Kata kunci: Analisis nilai ekonomi; fitopemulihan; halofit; Hypericum salsugineum;
            Salt Lake
            
 
             
           RUJUKAN
            
           Abosede, A. & Mokin, I. 2017.
            Review on heavy metals contamination in the environment. European Journal of Earth and Environment 4(1): 1-6.
  
           Acosta,
            J.A., Jansen, B., Kalbitz, K., Faz, A. & Martínez-Martínez, S. 2011.
            Salinity increases mobility of heavy metals in soils. Chemosphere 85(8): 1318-324.
  
 Adıgüzel, N., Byfield, A.,
            Duman, H. & Vural, M. 2005. Tuz Gölü ve Stepleri. In Türkiye’nin 122 Önemli Bitki Alanı, edited by Özhatay, N.,
            Byfield, A. & Atay, S. İstanbul: Türkiye WWF Türkiye (Doğal
            Hayatı Koruma Vakfı) Yayını. pp. 289-292.
  
           Anonymous. 2010. Salt Lake special
            environmental protection area habitat monitoring report. T.C. Ministry of
            Environment and Forestry Special Environmental Protection Agency.
            https://tvk.csb.gov.tr/tuz-golu-ozel-cevre-koruma-bolgesi-tur-ile-habitat-koruma-ve-izleme-projesi-proje. Accessed on 15 December 2017.
  
           Arshad, M., Silvestre, J., Pinelli,
            E., Kallerhoff, J., Kaemmerer, M., Tarigo, A., Shahid, M., Guiresse, M.,
            Pradere, P. & Dumat, C. 2008. A field study of lead phytoextraction by
            various scented Pelargonium cultivars. Chemosphere 71(11):
            2187-2192.
  
           Ayan, A.K., Kizilkaya, R., Cirak, C. & Kevseroglu, K. 2006. Heavy metal contents of St.
            John’s Wort (Hypericum perforatum L.) growing in northern
            Turkey. Journal of Plant Sciences 1(3): 182-186.
  
           Aybar, M., Bilgin, A.
  & Sağlam, B. 2015. Removing heavy metals from the soil with
            phytoremediation. Artvin Çoruh University
              Natural Disasters Application and Research Center Journal of Natural Hazards
              and Environment 1(1-2): 59-65.
  
           Baker, A.J.M. & Brooks, R.R.
            1989. Terrestrial higher plants which hyperaccumulate metallic elements - A
            review of their distribution. Ecology and
              Phytochemistry, Biorecovery 1: 81-126.
  
           Basak, E. 2003. Economic and
            socio-economic valuation of Tuz Gölü specially protected area, Central
            Anatolia, Turkey. Wageningen University. M.Sc. Thesis (Unpublished).
  
           Baysal Furtana, G., Duman, H. &
            Tıpırdamaz, R. 2013. Seasonal changes of inorganic and organic
            osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turkish
              Journal of Botany 37(3): 455-463.
  
           Benavides, M.P., Gallego, S.M.
  & Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal of
    Plant Physiology 17(1):
      21-34.
  
Bingöl, Ü., Cosge, B. & Gürbüz,
            B. 2010. Hypericum species in the
            flora of Turkey. Medicinal and Aromatic
              Plant Science and Biotechnology 5(1): 86-90.
  
           Blaylock, M.J. & Huang, J.W.
            2000. Phytoextraction of metals. In Phytoremediation
              of Toxic Metals: Using Plants to Clean-up the Environment, edited by Raskin,
            I. & Ensley, B.D. New York: Wiley. pp. 53-70.
  
           Brooks, R.R. 1998. General
            introduction. In Plants that
              Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology,
              Archaeology, Mineral Exploration and Phytomining, edited by Brooks, R.R. New
            York: CAB International. pp. 1-14.
  
           Castro, R., Pereira, S., Ana Lima,
            A., Corticeiro, S., V´alega, M., Pereira, E., Duarte, A. & Figueira, E.
            2009. Accumulation, distribution and cellular partitioning of mercury in
            several halophytes of a contaminated salt marsh. Chemosphere 76(10): 1348-1355.
  
           Chibuike, U.G. & Obiora, C.S.
            2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science 2014: 752708.
  
           Choi, Y.E., Harada, E., Wada, M.,
            Tsuboi, H., Morita, Y., Kusano, T. & Sano, H. 2001. Detoxification of
            cadmium in tobacco plants: Formation and active secretion of crystals
            containing cadmium and calcium through trichomes. Planta 213(1): 45-50.
  
           Clemens, S. 2006. Toxic metal
            accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11): 1707-1719.
  
           Cunningham, S.D. & Ow, D.W.
            1996. Promises and prospects of phytoremediation. Plant Physiology 110(3):
            715-719.
  
           Davis, P.H. 1967. Flora of Turkey and the East Aegean Islands 2. Edinburgh: Edinburgh University
            Press.
            
           Demir, A. 2014. Recreational use value of Tuz Lake in Turkey. Journal of Food, Agriculture &
            Environment 12(2):
            1092-1096.
  
           Duman, F., Aksoy, A. &
            Demirezen, D. 2007. Seasonal variability of heavy metals in surface sediment of
            Lake Sapanca, Turkey. Environmental
              Monitoring and Assessment 133(1-3): 277-283.
  
           Ellis, D.R. & Salt, D.E. 2003.
            Plants selenium and human health. Current
              Opinion in Plant Biology 6(3): 273-279.
  
           Ghnaya, T., Slama, I., Messedi, D.,
            Grignon, C., Ghorbel, M.H. & Abdelly, C. 2007. Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum:
            Consequences on growth. Chemosphere 67(1): 72-79.
  
           Ghnaya, T., Nouairi, I., Slama, I.,
            Messedi, D., Grignon, C., Abdelly, C. & Ghorbel, M.H. 2005. Cadmium effects
            on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal
              of Plant Physiology 162(10): 1133-1140.
  
           Ghosh, M. & Singh, S.P. 2005.
            Comparative uptake and phytoextraction study of soil induced chromium by
            accumulator and high biomass weed species. Applied
              Ecology and Environmental Research 3(2): 67-79.
  
           Glass, D.J. 1999. Economic potential
            of phytoremediation. In Phytoremediation
              of Toxic Metals: Using Plants to Clean Up the Environment, edited by
            Raskin, I. & Ensley, B.D. New York: John Wiley & Sons. pp. 15-31.
  
           Glass, D.J. 2000. The 2000 Phytoremediation Industry.
            Needham: Glass Associates.
            
           IUCN. 2019. Guidelines for Using the IUCN Red List Categories and Criteria: version
            4. Gland: IUCN Standards and Petitions Committee.
  
           Jordan, F.L., Robin-Abbott, M.,
            Maier, R.M. & Glenn, E.P. 2002. A comparison of chelator-facilitated metal
            uptake by a halophyte and a glycophyte. Environmental
              Toxicology Chemistry 21(12): 2698-2704.
  
           Lasat,
            M.M. 2000. The Use of Plants for the
              Removal of Toxic Metals from Contaminated Soil. Washington: U.S.
            Environmental Protection Agency.
  
 Lef´evre, I., Marchal,
            G., Meerts, P., Corr´eal, E. & Lutts, S. 2009. Chloride salinity reduces
            cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental Experimental Botany 65(1): 142-152. 
  
           Lintern, M., Anand, R., Ryan, C.
  & Paterson, D. 2013. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried
            gold deposits. Nature Communications 4: 2274.
  
           Lone, M.I., Raza, S.H., Muhammad,
            S., Naeem, M.A. & Khalid, M. 2006. Lead content in soil and wheat tissue
            along roads with different traffic loads in Rawalpindi District. Pakistan Journal of Botany 38(4):
            1035-1042.
  
           Long, X.X., Yang, X.E. & Ni,
            W.Z. 2002. Current status and perspective on phytoremediation of heavy metal
            polluted soils. Journal of Applied
              Ecology 13: 757-762.
  
           Lutts, S. & Lef’evre, I. 2015.
            Review: Part of a special issue on halophytes and saline adaptations. How can
            we take advantage of halophyte properties to cope with heavy metal toxicity in
            salt-affected areas? Annals of Botany 115(3): 509-528.
  
           Manousaki, E. & Kalogerakis, N.
            2011. Halophytes - An emerging trend in phytoremediation. International Journal of Phytoremediation 13(10): 959-969.
  
           Manousaki, E. & Kalogerakis, N.
            2009. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in
            relation to salinity. Environmental
              Science and Pollution Research 16(7): 844-854.
  
           Manousaki, E., Galanaki, K.,
            Papadimitriou, L. & Kalogerakis, N. 2013. Metal phytoremediation by the
            halophyte Limoniastrum monopetalum (L.) Boiss.: two contrasting ecotypes. International
              Journal Phytoremediation 16(7-8): 755-769.
  
           Manousaki, E., Kadukova, J.,
            Papadantonakis, N. & Kalogerakis, N. 2008. Phytoextraction and
            phytoexcretion of Cd by Tamarix
              smyrnensis growing on contaminated non saline and saline soils. Environmental Research 106(3): 326-332.
  
           Memon, A.R., Aktopraklıgil, D.,
  Özdemir, A. & Vertii, A. 2001. Heavy metal accumulation and detoxification
            mechanisms in plants. Turkish Journal
              Botany 25(3): 111-121.
  
           Milner, M.J. & Kochian, L.V.
            2008. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany 102(1): 3-13.
  
           Mishan, E.J. 1972. The futility of
            pareto-efficient distributions. The
              American Economic Review 62(5): 971-976.
  
           Nagajyoti, P.C., Lee, K.D. &
            Sreekanth, T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: A
            review. Environmental Chemistry Letters 8(3): 199-216.
  
           Niess, D.H. 1999. Microbial
            heavy-metal resistance. Applied
              Microbiology and Biotechnology 51: 730-750.
  
           Oosten, M.J.V. & Maggio, A.
            2015. Functional biology of halophytes in the phytoremediation of heavy metal
            contaminated soils. Environmental and
              Experimental Botany 111: 135-146.
  
           Radanović,
            D., Antić-Mladenović, S. & Jakovljević, M. 2002. Influence
            of some soil characteristics on heavy metal content in Hypericum perforatum L. and Achillea millefolium L. Acta Horticulturae 576: 295-301. 
  
 Reeves, R.D. 2006. Hyperaccumulation
            of trace elements by plants. In Phytoremediation
              of Metal-Contaminated Soils NATO
                Science Series: IV: Earth and Environmental Sciences, edited by Morel,
            J.L., Echevarria, G. & Goncharova, N. New York: Springer. pp. 1-25.
  
           Salt, D.E., Prince, R.C., Pickering,
            I.J. & Raskin, I. 1995. Mechanisms of cadmium mobility and accumulation in
            Indian Mustard. Plant Physiology 109(4): 1427-1433.
  
           Shafaghat, A., Salimi, F., Valiei,
            M., Salehzadeh, J. & Shafaghat, M. 2012. Removal of heavy metals (Pb2+,
            Cu2+ and Cr3+) from aqueous solutions using five plants
            materials. African Journal of
              Biotechnology 11(4): 852-855.
  
           Shi, W., Shao, H., Li, H., Shao, M. & Du, S. 2009. Progress in the remediation of hazardous heavy
            metal-polluted soils by natural zeolite. Journal of Hazardous Materials 170(1):
            1-6.
  
           Srivastava, V., Sarkar, A., Singh,
            S., Singh, P., Araujo, A.S.F. & Singh, R.P. 2017. Agroecological responses
            of heavy metal pollution with special emphasis on soil health and plant
            performances. Frontiers in Environmental
              Science 5: 64-82.
  
           Tuğ, G.N. 2006. Determination
            of the factors effective on zonation of halophytic vegetation of Salt Lake,
            Inner Anatolia, Turkey. Ankara University. PhD. Thesis (Unpublished).
            
           Tuğ, G.N. & Duman, F. 2010.
            Heavy metal accumulation in soils around Salt Lake in Turkey. Pakistan Journal of Botany 42(4):
            2327-2333.
  
           Wuana,
            R.A. & Okieimen, F.E. 2011. Heavy metals in contaminated
              soils: A review of sources, chemistry, risks and best available strategies for
              remediation. International Scholarly
                Research Notices 2011: 402647.
  
 Yang, Y.Y., Jung, J.Y., Song, W.Y.,
            Suh, H.S. & Lee, Y. 2000. Identification of rice varieties with high
            tolerance or sensitivity to lead and characterization of the mechanism of
            tolerance. Plant Physiology 124(3):
            1019-1026.
  
           
             
           *Pengarang untuk surat-menyurat;
            email: aynurdemir_1@hotmail.com
            
            
           
             
            
        
         
         |