Sains
Malaysiana 50(12)(2021): 3569-3582
http://doi.org/10.17576/jsm-2021-5012-09
Cyanamide-Modified
Iron (III) Oxide Photocatalysts for Degradation of Phenol in the Presence of
Urea and Formaldehyde
(Ferum(III)
Oksida Terubah Suai Sianamida sebagai Fotomangkin untuk Penguraian Fenol dengan
Kehadiran Urea dan Formaldehid)
NUR AZMINA ROSLAN1,2*,
HENDRIK O. LINTANG3,4,5 & LENY YULIATI3,4,5*
1Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru
Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
2Department of Chemistry, Faculty of Science, Universiti Teknologi
Malaysia, 81310 UTM, Johor Bahru, Johor Darul Takzim, Malaysia
3Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma
Chung, Villa Puncak Tidar
N-01, Malang 65151, East
Java, Indonesia
4Department of Chemistry, Faculty of Science and Technology,
Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, East Java,
Indonesia
5Centre for Sustainable Nanomaterials, Ibnu Sina Institute for
Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM
Johor Bahru, Johor Darul Takzim, Malaysia
Diserahkan: 7 Januari
2021/Diterima: 15 April 2021
ABSTRACT
Cyanamide as the source of carbon and nitrogen was used to modify
iron(III) oxide (Fe2O3) photocatalyst. While X-ray diffraction (XRD) patterns confirmed that the
cyanamide-modified Fe2O3 photocatalysts have comparable
crystallinity to that of the unmodified Fe2O3, the
diffuse reflectance ultraviolet-visible (DR UV-vis) spectra obviously showed
additional light absorption around 500-800 nm on the cyanamide-modified Fe2O3,
resulting in a better absorption capability under visible light irradiation.
The presence of cyanamide modifier decreased the fluorescence emission
intensity of Fe2O3, implying the reduced electron-hole
recombination on the Fe2O3 and/or blocked emission sites
by the modifier. The presence of carbon and nitrogen on the modified Fe2O3 photocatalysts was confirmed by the elemental analyzer. Photocatalytic
activities of Fe2O3 and cyanamide-modified Fe2O3 were then evaluated for degradation of phenol under
UV and visible light irradiation. Modification of Fe2O3 with cyanamide significantly improved the degradation of phenol from 30 to 75%
under UV light irradiation and from 0 to 80% under visible light irradiation.
Photocatalytic degradation of phenol was also investigated in the presence of
urea or formaldehyde or both urea and formaldehyde. Even though the percentage
of phenol degradation decreased in the presence of other pollutants, it was
demonstrated that cyanamide modified iron(III) oxide photocatalysts still gave
good activity towards degradation of phenol even in the presence of other
organic pollutants.
Keywords:
Cyanamide; formaldehyde; iron (III) oxide; phenol;
photocatalyst; urea
ABSTRAK
Sianamida sebagai sumber karbon dan nitrogen telah digunakan
untuk mengubah suai fotomangkin ferum(III) oksida (Fe2O3).
Corak teknik pembelauan sinar-X (XRD) mengesahkan bahawa fotomangkin Fe2O3 terubah suai sianamida mempunyai kristaliniti yang setanding dengan Fe2O3 yang tidak diubah dan spektrum DR UV-vis jelas menunjukkan penyerapan cahaya
tambahan sekitar 500-800 nm pada Fe2O3 terubah suai
sianamida, lalu menghasilkan keupayaan penyerapan yang lebih baik di bawah
cahaya tampak. Kehadiran pengubah sianamida menurunkan keamatan pendarcahaya Fe2O3,
mengurangkan penggabungan semula elektron-lubang dan/atau menyekat tapak
pemancaran pada Fe2O3. Kehadiran karbon dan nitrogen pada
fotomangkin Fe2O3 yang telah diubah suai telah disahkan
oleh analisis unsur. Aktiviti fotopemangkinan Fe2O3 dan
Fe2O3 yang diubah suai sianamida kemudiannya dinilai
untuk penguraian fenol di bawah sinaran UV dan cahaya tampak. Pengubahsuaian Fe2O3 dengan sianamida meningkatkan penguraian fenol dari 30 hingga 75% di bawah
sinaran UV dan dari 0 hingga 80% di bawah cahaya tampak. Penguraian
fotopemangkinan fenol juga dikaji dengan adanya urea atau formaldehid atau
kedua-duanya. Walaupun peratusan penguraian fenol menurun dengan kehadiran
bahan pencemar lain, fotomangkin Fe2O3 terubah suai
sianamida masih memberikan aktiviti yang baik terhadap penguraian fenol
walaupun dengan kehadiran bahan pencemar organik lain.
Kata kunci:
Fenol; ferum (III) oksida; fotomangkin; sianamid; urea
RUJUKAN
Abdullah, A.M.,
Al-Thani, N.J., Tawbi, K. & Al-Kandari, H. 2016. Carbon/nitrogen-doped TiO2:
New synthesis route, characterization and application for phenol degradation. Arabian Journal of Chemistry 9(2):
229-237.
Astarloa-Alerbe,
G., Echeverria, J.M., Egiburu, J.L., Ormaetxea, M. & Mondragon, I. 1998.
Kinetics of phenolic resol resin formation by HPLC. Polymer 39(14): 3147-3153.
Bassi, P.S.,
Xianglin, L., Fang, Y., Loo, J.S.C., Barber, J. & Wong, L.H. 2016.
Understanding charge transport in non-doped pristine and surface passivated
hematite (Fe2O3) nanorods under front and backside
illumination in the context of light induced water splitting. Physical Chemistry Chemical Physics 18(44): 30370-30378.
Buha, J., Djerdj,
I., Antonietti, M. & Niederberger, M. 2007. Thermal transformation of metal
oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and
urea as nitrogen source. Chemistry of
Materials 19(14): 3499-3505.
Cao, S., Fang,
J., Shahjamali, M.M., Wang, Z., Yin, Z., Yang, Y., Boey, F.Y.C., Barber, J.,
Loo, S.Y.J. & Xue, C. 2012. In situ growth of Au nanoparticles on Fe2O3 nanocrystals for
catalytic applications. CrystEngComm 14(21): 7229-7235.
Cao, S. &
Zhu, Y. 2011. Monodisperse α-Fe2O3 mesoporous
microspheres: One-step NaCl-assisted microwave-solvothermal preparation, size
control and photocatalytic property. Nanoscale Research Letter 6(1): 1.
Chemelewski,
W.D., Mabayoje, O., Tang, D., Rettie, A.J.E. & Mullins, C.B. 2016. Bandgap
engineering of Fe2O3 with Cr – application to
photoelectrochemical oxidation. Physical
Chemistry Chemical Physics 18(3): 1644-1648.
Chen, L., Li, F.,
Ni, B., Xu, J., Fu, Z. & Lu, Y. 2012. Enhanced visible photocatalytic
activity of hybrid Pt/α-Fe2O3 nanorods. RSC Advances 2(26): 10057-10063.
Cheng, L., Qiu,
S., Chen, J., Shao, J. & Cao, S. 2017. A practical pathway for the
preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Materials Chemistry and Physics 190: 53-61.
Cornell, R.M.
& Schwertmann, U. 2003. The Iron
Oxides: Structure, Properties, Reactions, Occurrences and Uses. New Jersey:
Wiley. pp. 701-705.
Dolat, D., Quici,
N., Kusiak-Nejman, E., Morawski, A.W. & Puma, G.L. 2012. One-step,
hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N,CTiO2)
photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursors
on photocatalytic activity and catalyst deactivation. Applied Catalysis B: Environmental 115-116: 81-89.
Guo, S., Zhang,
G., Guo, Y. & Yu, J.C. 2013. Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of
organic contaminants. Carbon 60:
437-444.
Hou, Y., Zuo, F.,
Dagg, A. & Feng, P. 2013. A three - dimensional branched cobalt - doped
α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient
photoelectrochemical water oxidation. Angewandte
Chemie International Edition 52(4): 1248-1252.
Hu, X., Zhao, Y.,
Cheng, W., Wang, D. & Nie, W. 2014. Synthesis and characterization of
phenol-urea-formaldehyde foaming resin used to block air leakage in
mining. Polymer Composites 35(10): 2056-2066.
Karunakaran, C.
& Senthilvelan, S. 2006. Fe2O3-photocatalysis with
sunlight and UV light: Oxidation of aniline. Electrochemistry Communications 8(1): 95-101.
Lee, S.C., Lintang,
H.O. & Yuliati, L. 2017. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,
4-dichlorophenoxyacetic acid. Beilstein
Journal of Nanotechnology 8: 915.
Li, H., Zhao, Q.,
Li, X., Zhu, Z., Tade, M. & Liu, S. 2013. Fabrication, characterization,
and photocatalytic property of α-Fe2O3/graphene
oxide composite. Journal of Nanoparticle
Research 15(6): 1670.
Li, P.G., Lei, M.
& Tang, W.H. 2008. Route to transition metal carbide nanoparticles through
cyanamide and metal oxides. Materials
Research Bulletin 43(12): 3621-3626.
Li, X., Yu, X.,
He, J. & Xu, Z. 2009. Controllable fabrication, growth mechanisms, and
photocatalytic properties of hematite hollow spindles. The Journal of Physical Chemistry C 113(7): 2837-2845.
Liang, P., Zhang,
C., Sun, H., Liu, S., Tadé, M. & Wang, S. 2016. Photocatalysis of C,N-doped
ZnO derived from ZIF-8 for dye degradation and water oxidation. RSC Advances 6(98): 95903-95909.
Lin, Y., Yuan,
G., Sheehan, S., Zhou, S. & Wang, D. 2011. Hematite-based solar water
splitting: Challenges and opportunities. Energy & Environmental Science 4(12): 4862-4869.
Liu, G., Deng,
Q., Wang, H., Dickon, H.L.N., Kong, M., Cai, W. & Wang, G. 2012.
Micro/nanostructured α-Fe2O3 spheres: Synthesis,
characterization, and structurally enhanced visible-light photocatalytic
activity. Journal of Materials Chemistry 22(19): 9704-9713.
Mirbagheri, N.,
Wang, D., Peng, C., Wang, J., Huang, Q., Fan, C. & Ferapontova, E.E. 2014.
Visible light driven photoelectrochemical water oxidation by Zn-and Ti-doped
hematite nanostructures. ACS Catalysis 4(6): 2006-2015.
Mohamed, M.A.,
Zain, M.F.M., Minggu, L.J., Kassim, M.B., Jaafar, J., Amin, N.A.S. & Ng,
Y.H. 2019. Revealing the role of kapok fibre as bio-template for in-situ construction of C-doped g-C3N4@C,N
co-doped TiO2 core-shell heterojunction photocatalyst and its
photocatalytic hydrogen production performance. Applied Surface Science 476: 205-220.
Mohamed, M.A., Abdul
Rahman, N., Zain, M.F.M., Minggu, L.J., Kassim, M.B., Jaafar, J., Samad, S.,
Mastuli, M.S. & Wong, R.J. 2020. Hematite microcube decorated TiO2 nanorods
as heterojunction photocatalyst with in-situ carbon doping derived from polysaccharides bio-templates hydrothermal
carbonization. Journal of Alloys and
Compounds 820: 153143.
Mohamed, M.A.,
Wan Salleh, W.N., Jaafar, J., Rosmi, M.S., Mohd. Hir, Z.A., Abd Mutalib, M.,
Ismail, A.M. & Tanemura, M. 2017. Carbon as amorphous shell and
interstitial dopant in mesoporous rutile TiO2: bio-template assisted
sol-gel synthesis and photocatalytic activity. Applied Surface Science 393: 46-59.
Mou, F., Xu, L.,
Ma, H., Guan, J., Chen, D. & Wang, S. 2012. Facile preparation of magnetic
γ-Fe2O3/TiO2 Janus hollow bowls with
efficient visible-light photocatalytic activities by asymmetric shrinkage. Nanoscale 4(15): 4650-4657.
Pradhan, G.K.,
Sahu, N. & Parida, K.M. 2013. Fabrication of S, N co-doped α-Fe2O3 nanostructures: Effect of doping, OH radical formation, surface area,
[110] plane and particle size on the photocatalytic activity. RSC Advances 3(21): 7912-7920.
Qiu, Y., Leung,
S., Zhang, Q., Hua, B., Lin, Q., Wei, Z., Tsui, K., Zhang, Y., Yang, S. &
Fan, Z. 2014. Efficient photoelectrochemical water splitting with ultrathin
films of hematite on three-dimensional nanophotonic structures. Nano Letters 14(4): 2123-2129.
Roslan, N.A.,
Lintang, H.O. & Yuliati, L. 2014. Preparation of iron (III) oxide
nanoparticles using a mesoporous carbon nitride template for photocatalytic
phenol removal. Materials Research Innovations 18(6): S6-465-S6-469.
Sivula, K.,
Le Formal, F. & Grätzel, M. 2011. Solar water splitting: Progress
using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4): 432-449.
Stroyuk, A.L.,
Sobran, I.V. & Kuchmiy, S.Y. 2007. Photoinitiation of acrylamide
polymerization by Fe2O3 nanoparticles. Journal of Photochemistry and Photobiology
A: Chemistry 192(2): 98-104.
Sundaramurthy,
J., Kumar, P.S., Kalaivani, M., Thavasi, V., Mhaisalkar, S.G. &
Ramakrishna, S. 2012. Superior photocatalytic behaviour of novel 1D nanobraid
and nanoporous α-Fe2O3 structures. RSC Advances 2(21): 8201-8208.
Thomas, A.,
Fischer, A., Goettmann, F., Antonietti, M., Müller, J., Schlögl, R. &
Carlsson, J.M. 2008. Graphitic carbon nitride materials: variation of structure
and morphology and their use as metal-free catalysts. Journal of Materials Chemistry 18(41): 4893-4908.
Thomas, P.,
Sreekanth, P. & Abraham, K.E. 2015. Nanosecond and ultrafast optical power
limiting in luminescent Fe2O3 hexagonal nanomorphotype. Journal of Applied Physics 117(5):
053103.
Wang, X.,
Blechert, S. & Antonietti, M. 2012. Polymeric graphitic carbon nitride for
heterogeneous photocatalysis. ACS
Catalysis 2(8): 1596-1606.
Wen, X.H. &
Pan, H.J. 2012. Electron properties of F, and N doped hematite: The application
for photocatalysis. Advanced Materials
Research 562-564: 298-301.
Xu, Y., Zhang,
G., Du, G., Sun, Y. & Gao, D. 2013. α-Fe2O3 nanostructures with different morphologies: Additive-free synthesis, magnetic
properties, and visible light photocatalytic properties. Materials Letters 92: 321-324.
Yang, J., Li, D.,
Zhang, Z., Li, Q. & Wang, H. 2000. A study of the photocatalytic oxidation
of formaldehyde on Pt/Fe2O3/TiO2. Journal of Photochemistry and Photobiology
A: Chemistry 137(2-3): 197-202.
Yang, S., Xu, Y.,
Sun, Y., Zhang, G. & Gao, D. 2012. Size-controlled synthesis, magnetic
property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route. CrystEngComm 14(23): 7915-7921.
Yu, B. &
Kwak, S. 2012. Carbon quantum dots embedded with mesoporous hematite nanospheres
as efficient visible light-active photocatalysts. Journal of Materials Chemistry 22(17): 8345-8353.
Yusoff, N., Ho,
L., Ong, S. & Wong, Y. 2017. Enhanced photodegradation of phenol by ZnO
nanoparticles synthesized through sol-gel method. Sains Malaysiana 46(12): 2507-2514.
Zhang, H., Ming,
H., Lian, S., Huang, H., Li, H., Zhang, L., Liu, Y., Kang, Z. & Lee, S.
2011. Fe2O3/carbon quantum dots complex photocatalysts
and their enhanced photocatalytic activity under visible light. Dalton Transactions 40(41): 10822-10825.
Zhang, M., Luo,
W., Li, Z., Yu, T. & Zou, Z. 2010. Improved photoelectrochemical responses
of Si and Ti codoped α-Fe2O3 photoanode films. Applied Physics Letters 97(4): 042105.
Zhang, Y., Jiang,
S., Song, W., Zhou, P., Ji, H., Ma, W., Hao, W., Chen, C. & Zhao, J. 2015.
Nonmetal P-doped hematite photoanode with enhanced electron mobility and high
water oxidation activity. Energy &
Environmental Science 8(4): 1231-1236.
Zhao, W., Liu,
Y., Liu, J., Chen, P., Chen, I.W., Huang, F. & Lin, J. 2013. Controllable
synthesis of silver cyanamide as a new semiconductor photocatalyst under
visible-light irradiation. Journal of
Materials Chemistry A 1(27): 7942-7948.
*Pengarang untuk surat-menyurat;
email: nazmina@mpob.gov.my
|