Sains Malaysiana 50(1)(2021): 261-278

http://dx.doi.org/10.17576/jsm-2021-5001-25

 

A Bayesian Approach for Estimation of Coefficients of Variation of Normal Distributions

(Pendekatan Bayesian untuk Anggaran Pekali Variasi Taburan Normal)

 

WARISA THANGJAI1, SA-AAT NIWITPONG2* & SUPARAT NIWITPONG2

 

1Department of Statistics, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand

 

2Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand

 

Diserahkan: 26 Oktober 2019/Diterima: 30 Jun 2020

 

ABSTRACT

The coefficient of variation is widely used as a measure of data precision. Confidence intervals for a single coefficient of variation when the data follow a normal distribution that is symmetrical and the difference between the coefficients of variation of two normal populations are considered in this paper. First, the confidence intervals for the coefficient of variation of a normal distribution are obtained with adjusted generalized confidence interval (adjusted GCI), computational, Bayesian, and two adjusted Bayesian approaches. These approaches are compared with existing ones comprising two approximately unbiased estimators, the method of variance estimates recovery (MOVER) and generalized confidence interval (GCI). Second, the confidence intervals for the difference between the coefficients of variation of two normal distributions are proposed using the same approaches, the performances of which are then compared with the existing approaches. The highest posterior density interval was used to estimate the Bayesian confidence interval. Monte Carlo simulation was used to assess the performance of the confidence intervals. The results of the simulation studies demonstrate that the Bayesian and two adjusted Bayesian approaches were more accurate and better than the others in terms of coverage probabilities and average lengths in both scenarios. Finally, the performances of all of the approaches for both scenarios are illustrated via an empirical study with two real-data examples.

 

Keywords: Bayesian approach; coefficient of variation; difference; normal distribution; simulation

 

ABSTRAK

Pekali variasi digunakan secara meluas sebagai ukuran ketepatan data. Selang kepercayaan untuk pekali variasi tunggal apabila data mengikuti taburan normal yang simetris dan perbezaan antara pekali variasi dua populasi normal dipertimbangkan dalam makalah ini. Pertama, selang kepercayaan untuk pekali variasi sebaran normal diperoleh dengan selang kepercayaan umum yang disesuaikan (GCI disesuaikan), pengiraan, Bayesian dan dua pendekatan Bayesian yang disesuaikan. Pendekatan ini dibandingkan dengan pendekatan sedia ada yang terdiri daripada dua penganggar yang tidak berat sebelah, kaedah pemulihan anggaran varians (MOVER) dan selang kepercayaan umum (GCI). Seterusnya, selang kepercayaan untuk perbezaan antara koefisien variasi dua taburan normal diusulkan menggunakan pendekatan yang sama, persembahannya kemudian dibandingkan dengan pendekatan yang ada. Selang ketumpatan posterior tertinggi digunakan untuk menganggar selang keyakinan Bayesian. Simulasi Monte Carlo digunakan untuk menilai prestasi selang kepercayaan. Hasil kajian simulasi menunjukkan bahawa pendekatan Bayesian dan dua Bayesian yang disesuaikan lebih tepat dan lebih baik daripada yang lain daripada segi kebarangkalian liputan dan panjang purata dalam kedua-dua senario tersebut. Akhirnya, prestasi semua pendekatan untuk kedua-dua senario digambarkan melalui kajian empirik dengan dua contoh data sebenar.

 

Kata kunci: Pendekatan Bayesian; pekali variasi; perbezaan; simulasi; taburan normal

 

RUJUKAN

Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53: 370-418.

Bernat, D.H., Lazovich, D., Forster, J.L., Oakes, J.M. & Chen, V. 2009. Area-level variation in adolescent smoking. Preventing Chronic Disease 6(2): 1-8.

Camara, V.A.R. 2012. New approximate Bayesian confidence intervals for the coefficient of variation of a Gaussian distribution. Journal of Modern Applied Statistical Methods 11(1): 158-166.

Camara, V.A.R. 2003. Approximate Bayesian confidence intervals for the variance of a Gaussian distribution. Journal of Modern Applied Statistical Methods 2(2): 350-358.

Chow, P.K., Wan, C.P., Yip, S.P. Tsim, Y.L., Tsang, K.S., Li, K.F., Wong, H.F., Leung, K.K. & Lee, W.C. 1998. Haematology & Serology. Hong Kong Medical Technology Association Quality Assurance Programme Biennial Report 1997 & 98: 15-27.

Donner, A. & Zou, G.Y. 2012. Closed-form confidence intervals for functions of the normal mean and standard deviation. Statistical Methods in Medical Research 21(4): 347-359.

Doornbos, R. & Dijkstra, J.B. 1983. A multi sample test for the equality of coefficients of variation in normal populations. Communications in Statistics-Simulation and Computation 12(2): 147-158.

Fung, W.K. & Tsang, T.S. 1998. A simulation study comparing tests for the equality of coefficients of variation. Statistics in Medicine 17(17): 2003-2014.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. & Rubin, D.B. 2013. Bayesian Data Analysis. Florida: Chapman and Hall/CRC. pp. 29-62.

Gül, H.H.Gökpinar, E., Ebegil, M.Özdemir, Y.A. & Gökpinar, F. 2019. A new test for the homogeneity of inverse Gaussian scale parameters based on computational approach test. Sains Malaysiana 48(8): 1777-1785.

Gulhar, M., Kibria, B.M.G., Albatineh, A.N. & Ahmed, N.U. 2012. A comparison of some confidence intervals for estimating the population coefficient of variation: A simulation study. Statistics and Operations Research Transactions 36(1): 45-68.

Harvey, J. & van der Merwe, A.J. 2012. Bayesian confidence intervals for means and variances of lognormal and bivariate lognormal distributions. Journal of Statistical Planning and Inference 142(6): 1294-1309.

Harvey, J., Groenewald, P.C.N. & van der Merwe, A.J. 2010. Bayesian Confidence Intervals for the Mean of a Lognormal Distribution: A Comparison with the MOVER and Generalized Confidence Interval Procedure. Technical Report No. 408. Department of Statistics and Actuarial Science, University of the Free State. pp. 1-28.

Kang, C.W., Lee, M.S., Seong, Y.J. & Hawkins, D.M. 2007. A control chart for the coefficient of variation. Journal of Quality Technology 39(2): 151-158.

Krishnamoorthy, K., Mathew, T. & Ramachandran, G. 2006. Generalized P-values and confidence intervals: A novel approach for analyzing lognormally distributed exposure data. Journal of Occupational and Environmental Hygiene 3(11): 642-650.

Lim, S.L., Yeong, W.C., Khoo, M.B.C. & Chew, X.Y. 2018. A comparison of the variable sampling interval (VSI) and variable sample size (VSS) coefficient of variation charts. Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering 129: 1-8.

Liu, S., Qin, G., Wang, B. & Zhou, H. 2015. Confidence interval estimation for coefficient of variation. Georgia State University, M.Sc. Thesis (Unpublished).

Mahmoudvand, R. & Hassani, H. 2009. Two new confidence intervals for the coefficient of variation in a normal distribution. Journal of Applied Statistics 36(4): 429-442.

McKay, A.T. 1932. Distribution of the coefficient of variation and the extended ‘t’ distribution. Journal of Royal Statistics Society 95(4): 695-698.

Menzefricke, U. 2010. Control charts for the variance and coefficient of variation based on their predictive distribution. Communications in Statistics-Theory and Methods 39(16): 2930-2941.

Niwitpong, S. 2015. Confidence intervals for the difference between coefficients of variation of normal distribution with bounded parameters. Far East Journal of Mathematical Sciences 98(5): 649-663.

Rao, K.A. & D’Cunha, J.G. 2016. Bayesian inference for median of the lognormal distribution. Journal of Modern Applied Statistical Methods 15(2): 526-535.

Saelee, V., Kornpetpanee, S. & Wongkasem, P. 2013. An examination of the variability of agricultural production using a new approximate confidence interval for the coefficient of variation. ScienceAsia 39: 440-443.

Singh, M. 1993. Behavior of sample coefficient of variation drawn from several distributions. Sankya 55(1): 65-76.

Taye, G. & Njuho, P. 2008. Monitoring field variability using confidence interval for coefficient of variation. Communications in Statistics-Theory and Methods 37(6): 831-846.

Thangjai, W., Niwitpong, S. & Niwitpong, S. 2020. Adjusted generalized confidence intervals for the common coefficient of variation of several normal populations. Communications in Statistics-Simulation and Computation 49(1): 194-206.

Thangjai, W., Niwitpong, S. & Niwitpong, S. 2019. Simultaneous confidence intervals for all differences of coefficients of variation of log-normal distributions. Hacettepe Journal of Mathematics and Statistics 48(5): 1505-1521.

Tian, L. 2005. Inferences on the common coefficient of variation. Statistics in Medicine 24(14): 2213-2220.

Tongmol, N., Srisodaphol, W. & Boonyued, A. 2016. A Bayesian approach to the one-way ANOVA under unequal variance. Sains Malaysiana 45(10): 1565-1572.

van Zyl, R. & van der Merwe, A.J. 2017. A Bayesian control chart for a common coefficient of variation. Communications in Statistics-Theory and Methods 46(12): 5795-5811.

Vangel, M.G. 1996. Confidence intervals for a normal coefficient of variation. Journal American Statistical Association 50(1): 21-26.

Verrill, S. & Johnson, R.A. 2007. Confidence bounds and hypothesis tests for normal distribution coefficients of variation. Communications in Statistics-Theory and Methods 36(12): 2187-2206.

Weerahandi, S. 1995. Exact Statistical Methods for Data Analysis. New York: Springer-Verlag. pp. 57-58.

Wong, A.C.M. & Wu, J. 2002. Small sample asymptotic inference for the coefficient of variation: Normal and nonnormal models. Journal of Statistical Planning and Inference 104(1): 73-82.

Zhang, J., Li, Z. & Wang, Z. 2018. Control chart for monitoring the coefficient of variation with an exponentially weighted moving average procedure. Quality and Reliability Engineering International 34(2): 188-202.

Zou, G.Y., Huo, C.Y. & Taleban, J. 2009. Simple confidence intervals for lognormal means and their differences with environmental applications. Environmetrics 20(2): 172-180.

 

*Pengarang untuk surat-menyurat; email: sa-aat.n@sci.kmutnb.ac.th

 

 

 

   

sebelumnya