Sains Malaysiana 50(2)(2021): 351-360
http://dx.doi.org/10.17576/jsm-2021-5002-07
Soil Factors are the Drivers for Wetlands Colonization by Pneumatopteris afra in Nigeria
(Faktor Tanah adalah Pemacu Penjajahan Tanah Lembap oleh Pneumatopteris afra di Nigeria)
AKOMOLAFE GBENGA FESTUS1,2* &
RAHMAD ZAKARIA1,3
1School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
2Department of Botany, Federal University of Lafia, PMB 146,
Lafia, Nigeria
3Center for Global Sustainability Studies (CGSS), Level 5,
Hamzah Sendut Library 1, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
Diserahkan: 17 Februari 2020/Diterima: 22 Julai 2020
ABSTRACT
The relationships
between soil factors and plant community characteristics of some wetlands
invaded by Pneumatopteris afra and
non-invaded ones were investigated. Sixty soil samples were obtained from six
wetlands comprising three invaded and three non-invaded in Lafia, Nigeria using
sixty quadrants arranged on six 200 m transects. The samples, after air-dried
and sieved using 2 mm mesh were analysed for the physico-chemical properties which include pH, organic
matter (OM), percentage nitrogen (% N), phosphorus (P), calcium (Ca), sodium
(Na), potassium (K), magnesium (Mg), exchangeable acidity (EA), percentage base
saturation (% BS), particle size, porosity, bulk density (BD), hydraulic
conductivity (HC), and moisture content (MC) using standard methods. Direct
ordination in canonical correspondence analysis was used to determine the
influence of these soil factors on P. afra abundance, Shannon diversity, and species richness of both invaded and
non-invaded sites. All sites differ from each other in terms of their physico-chemical parameters. The invaded sites appeared to
be more acidic (pH = 3.22), less sandy, more porous (38.11%), low HC (1.23) as
compared with non-invaded ones. Soil factors that favoured abundance of P. afra (% OM and EA) correlated
negatively with Shannon diversity index of invaded sites which was positively
influenced by % N, pH, and cation exchange capacity (CEC). At the non-invaded
sites, Shannon index and density were influenced positively by % BS, pH, AP,
and % N. All these observations showed that the soil factors played significant roles in the establishment of P. afra at the
invaded sites, and also on the plant diversity at non-invaded sites.
Keywords: Invasive
plants; Lafia; physico-chemical parameters; Pneumatopteris afra; wetlands
ABSTRAK
Hubungan
antara faktor tanah dan ciri komuniti tanaman di sebilangan tanah lembap yang
diserang dan yang tidak diserang oleh Pneumatopteris afra telah dikaji. Enam
puluh sampel tanah diperoleh dari enam tanah lembap yang terdiri daripada tiga yang
diserang dan tiga yang tidak diserang di Lafia, Nigeria menggunakan enam puluh
kuadran yang disusun pada enam transek bersaiz 200 m. Sampel yang telah
dikering udara dan diayak menggunakan jaring 2 mm telah dianalisis untuk sifat
fiziko-kimia yang meliputi pH, bahan organik (OM), peratus nitrogen (% N),
fosforus (P), kalsium (Ca), natrium (Na), kalium (K), magnesium (Mg), keasidan
tertukarkan (EA), peratus ketepuan bes (% BS), ukuran zarah, keliangan,
ketumpatan pukal (BD), kekonduksian hidraulik (HC) dan kandungan kelembapan
(MC) menggunakan kaedah piawai. Pengordinatan langsung dalam analisis
penghubungan berkanun digunakan untuk menentukan pengaruh faktor tanah terhadap
kelimpahan P. afra, kepelbagaian Shannon dan kekayaan spesies daripada
kedua-dua tapak yang diserang dan tidak diserang. Kesemua tapak adalah berbeza
antara satu sama lain daripada segi parameter fiziko-kimia mereka. Tapak yang
diserang kelihatan lebih berasid (pH = 3.22), kurang berpasir, lebih berpori
(38.11%), rendah HC (1.23) berbanding dengan tapak yang tidak diserang. Faktor
tanah yang memihak kepada kelimpahan P. afra (% OM dan EA) berkorelasi
secara negatif dengan indeks kepelbagaian Shannon dari tapak yang diserang,
dipengaruhi secara positif oleh % N, pH dan keupayaan pertukaran kation (CEC).
Pada tapak yang tidak diserang, indeks dan ketumpatan Shannon dipengaruhi secara
positif oleh % BS, pH, AP dan % N. Semua pemerhatian ini menunjukkan bahawa
faktor tanah memainkan peranan penting dalam penubuhan P. afra di lokasi
yang diserang dan juga kepelbagaian tanaman di kawasan yang tidak diserang.
Kata kunci:
Lafia; parameter fiziko-kimia; Pneumatopteris afra; tanah lembap; tumbuhan invasive
RUJUKAN
Akomolafe, G.F. & Rahmad,
Z.B. 2020. Wetlands invaded by Pneumatopteris afra(Christ.) Holttum are more threatened than non-invaded ones in Nigeria. Songklanakarin Journal of Science and Technology 42(4): 858-864.
Archer, N.A.L., Quinton,
J.N. & Hess, T.M. 2002. Below-ground relationships of soil texture, roots
and hydraulic conductivity in two-phase mosaic vegetation in South-east
Spain. Journal of Arid Environments 52(4): 535-553.
Ashman, M. & Puri, G. 2013. Essential
Soil Science: A Clear and Concise Introduction to Soil Science. New York:
John Wiley & Sons.
Athanase, N., Vicky, R., Jayne, M.N. & Sylvestre, H. 2013. Soil acidification and lime quality:
Sources of soil acidity, its effects on plant nutrients, efficiency of lime and
liming requirements. Agricultural
Advances 2(9): 259-269.
Badalamenti, E., Gristina,
L., Laudicina, V.A., Novara, A., Pasta, S. & La Mantia, T. 2016. The impact of Carpobrotus cfr. acinaciformis (L.) L. Bolus on soil nutrients, microbial communities structure and native
plant communities in Mediterranean ecosystems. Plant and Soil 409(1-2): 19-34.
Bens, O., Wahl, N.A.,
Fischer, H. & Hüttl, R.F. 2007. Water
infiltration and hydraulic conductivity in sandy cambisols:
Impacts of forest transformation on soil hydrological properties. European
Journal of Forest Research 126(1): 101-109.
Beven, K. & Germann, P.
2013. Macropores and water flow in soils
revisited. Water Resources Research 49(6): 3071-3092.
Bodner, G., Loiskandl, W., Buchan, G. & Kaul, H.P. 2008. Natural
and management-induced dynamics of hydraulic conductivity along a cover-cropped
field slope. Geoderma 146(1-2): 317-325.
Bouyoucos, G.J. 1951. A recalibration of the hydrometer
method for making mechanical analysis of soils. Agronomy Journal 43(9): 434-438.
Broennimann, O., Treier, U.A.,
Müller‐Schärer, H., Thuiller,
W., Peterson, A.T. & Guisan, A. 2007. Evidence of
climatic niche shift during biological invasion. Ecology Letters 10(8): 701-709.
Callaway, R.M., Thelen, G.C., Rodriguez, A. & Holben,
W.E. 2004. Soil biota and exotic plant invasion. Nature 427(6976): 731.
Chapman, H.D. &
Pratt, P.F. 1961. Methods of analysis for soils. Plants and Waters: 169-176.
Clark, D.B., Palmer,
M.W. & Clark, D.A. 1999. Edaphic factors and the landscape‐scale
distributions of tropical rain forest trees. Ecology 80(8): 2662-2675.
Czortek, P., Królak,
E., Borkowska, L. & Bielecka,
A. 2020. Impacts of soil properties and functional diversity on the performance
of invasive plant species Solidago canadensis L. on post-agricultural wastelands. Science
of The Total Environment 729: 139077.
Edwards, W.M., Shipitalo, M.J., Owens, L.B. & Norton, L.D. 1990.
Effect of Lumbricus terrestris L.
burrows on hydrology of continuous no-till corn fields. Geoderma 46(1-3): 73-84.
Fischer, C., Roscher, C., Jensen, B., Eisenhauer, N., Baade, J., Attinger, S., Scheu, S., Weisser, W.W., Schumacher, J.
& Hildebrandt, A. 2014. How do earthworms, soil texture and plant
composition affect infiltration along an experimental plant diversity gradient
in grassland? PLoS ONE 9(6): e98987.
Flowers, T.J. & Colmer, T.D. 2008. Salinity tolerance in halophytes. New Phytologist 179(4): 945-963.
Galatowitsch, S.M., Anderson, N.O. & Ascher, P.D. 1999.
Invasiveness in wetland plants in temperate North America. Wetlands 19(4): 733-755.
Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P.,
Asner, G.P., Cleveland, C.C., Green, P.A. & Holland, E.A. 2004. Nitrogen
cycles: Past, present, and future. Biogeochemistry 70(2): 153-226.
Gioria, M. & Pyšek,
P. 2016. The legacy of plant invasions: Changes in the soil seed bank of
invaded plant communities. BioScience 66(1): 40-53.
Gibbons,
S.M., Lekberg, Y., Mummey, D.L., Sangwan,
N., Ramsey, P.W. & Gilbert, J.A. 2017. Invasive plants rapidly reshape soil
properties in a grassland ecosystem. MSystems 2(2): e00178-16.
Hammer, Ø., Harper,
D.A.T. & Ryan, P.D. 2001. PAST: Paleontological statistics software package
for education and data analysis. Palaeontologia Electronica 4(1): 1-9.
Jarvis, N.J. &
Messing, I. 1995. Near-saturated hydraulic conductivity in soils of contrasting
texture measured by tension infiltrometers. Soil
Science Society of America Journal 59(1): 27-34.
Khairil, M., Siti-Meriam, A., Nur-Fatihah,
H.N., Nashriyah, M., Razali, M.S. & Noor-Amalina, R. 2015. Association of edaphic factors with
herbal plants abundance and density in a recreational forest, Terengganu,
Peninsular Malaysia. Malaysia Applied
Biology 44(2): 33-43.
Khairil, M., Juliana, W.A.W. & Nizam, M.S. 2014.
Edaphic influences on tree species composition and community structure in a
tropical watershed forest in peninsular Malaysia. Journal of Tropical Forest Science 26(2): 284-294.
Khairil, M., Juliana, W.A.W., Nizam, M.S. & Faszly, R. 2011. Community structure and biomass of tree
species at Chini watershed forest, Pekan, Pahang. Sains Malaysiana 40(11): 1209-1221.
Klironomos, J.N. 2002. Feedback with soil biota
contributes to plant rarity and invasiveness in communities. Nature 417(6884): 67-70.
Kördel, W., Egli, H. &
Klein, M. 2008. Transport of pesticides via macropores (IUPAC technical report). Pure and Applied Chemistry 80(1):
105-160.
Koutika, L., Vanderhoeven,
S., Chapuis-Lardy, L., Dassonville,
N. & Meerts, P. 2007. Assessment of changes in
soil organic matter after invasion by exotic plant species. Biology and Fertility of Soils 44(2):
331-341.
Landon, J.R. 2014. Booker Tropical Soil Manual: A Handbook for
Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. London:
Routledge.
Laughlin, D.C. & Abella, S.R. 2007. Abiotic and biotic factors explain
independent gradients of plant community composition in ponderosa pine forests. Ecological Modelling 205(1-2):
231-240.
Liao, Q., Zhang, X., Li,
Z., Pan, G., Smith, P., Jin, Y. & Wu, X. 2009.
Increase in soil organic carbon stock over the last two decades in China's
Jiangsu Province. Global Change Biology 15(4): 861-875.
Lin, H.S., McInnes,
K.J., Wilding, L.P. & Hallmark, C.T. 1999. Effects of soil morphology on
hydraulic properties I. Quantification of soil morphology. Soil
Science Society of America Journal 63(4): 948-954.
Lodge, D.M., Williams,
S., MacIsaac, H.J., Hayes, K.R., Leung, B., Reichard, S., Mack, R.N., Moyle,
P.B., Smith, M. & Andow, D.A. 2006. Biological
invasions: Recommendations for US policy and management. Ecological
Applications 16(6): 2035-2054.
Lorenzo,
P., Rodríguez-Echeverría, S., González, L. &
Freitas, H. 2010. Effect of invasive Acacia dealbata link on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology 44(3):
245-251.
Maron, J.L., Vilà, M., Bommarco, R.,
Elmendorf, S. & Beardsley, P. 2004. Rapid evolution of an invasive plant. Ecological Monographs 74(2): 261-280.
Mitchell, C.E. &
Power, A.G. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421(6923): 625-627.
Normand, S., Ricklefs, R.E., Skov, F., Bladt, J., Tackenberg, O. & Svenning, J. 2011. Postglacial migration supplements
climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences 278(1725):
3644-3653.
Obi, M.E. 1999. The
physical and chemical responses of a degraded sandy clay loam soil to cover
crops in southern Nigeria. Plant and Soil 211(2): 165-172.
Olsen, S.R. 1954. Estimation of Available Phosphorus in Soils
by Extraction with Sodium Bicarbonate. US Department of Agriculture.
Ozinga, W.A., Joop, H.J., Schaminée, R.M., Bekker, S.B., Peter, P., Oliver, T., Jan, B. & Jan,
M.G. 2005. Predictability of plant species composition from environmental
conditions is constrained by dispersal limitation. Oikos 108(3): 555-561.
Paoli, G.D., Curran, L.M. & Slik, J.W.F. 2008. Soil nutrients affect spatial patterns
of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155(2):
287-299.
Pawluk, S. & Carson, J.A. 1963. Evaluation of methods for
determination of exchange acidity in soils. Canadian
Journal of Soil Science 43(2): 325-335.
Pérès, G., Cluzeau, D., Menasseri, S., Soussana, J., Bessler, H., Engels, C., Habekost,
M., Gleixner, G., Weigelt,
A. & Weisser, W.W. 2013. Mechanisms linking plant community properties to
soil aggregate stability in an experimental grassland plant diversity
gradient. Plant and Soil 373(1-2): 285-299.
Richardson, D.M.,
Allsopp, N., D'Antonio, C.M., Milton, S.J. & Rejmánek, M. 2000. Plant invasions-the role of mutualisms. Biological Reviews 75(1): 65-93.
Ripple, W.J. & Beschta, R.L. 2012. Trophic cascades in Yellowstone: The
first 15 years after wolf reintroduction. Biological
Conservation 145(1): 205-213.
Rowell, D.L. 2014. Soil Science: Methods & Applications. London: Routledge.
Russell, J.C. &
Blackburn, T.M. 2017. The rise of invasive species denialism. Trends in Ecology and Evolution 32: 3-6.
Sabelis, M.W. & Crawley, M.J. 1992. Natural Enemies: The Population Biology of
Predators, Parasites and Diseases. New York: John Wiley & Sons.
Schulz, M., Gauss, M., Benedictow, A., Jonson, J.E., Tsyro,
S., Nyıri, A., Simpson, D., Steensen, B.M.,
Klein, H. & Valdebenito, A. 2013. EMEP Status
Report 2011. Transboundary Acidification, Eutrophication and Ground
Level Ozone in Europe in 2011. Norway: Norwegian Meteorology Institute.
Sharma, A., Batish, D.R., Singh, H.P., Jaryan,
V. & Kohli, R.K. 2017. The impact of invasive Hyptis suaveolens on the floristic composition
of the periurban ecosystems of Chandigarh,
northwestern India. Flora 233:
156-162.
Six, J., Bossuyt, H., Degryze, S. & Denef, K. 2004. A history of research on the link between
(micro) aggregates, soil biota, and soil organic matter dynamics. Soil
and Tillage Research 79(1): 7-31.
Soti, P.G., Purcell, M. & Jayachandran, K. 2020.
Soil biotic and abiotic conditions negate invasive species performance in
native habitat. Ecological Processes 9(1):
1-9.
Teixeira,
L.H., Yannelli, F.A., Ganade,
G. & Kollmann, J. 2020. Functional diversity and
invasive species influence soil fertility in experimental grasslands. Plants 9(1): 53.
Thomas, C.D., Cameron,
A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., De Siqueira, M.F.,
Grainger, A. & Hannah, L. 2004. Extinction risk from climate change. Nature 427(6970): 145-148.
Thuiller, W., Richardson, D.M., Pyšek,
P., Midgley, G.F., Hughes, G.O. & Rouget, M.
2005. Niche‐based modelling as a tool for predicting the risk of alien
plant invasions at a global scale. Global
Change Biology 11(12): 2234-2250.
Vereecken, H. 1995. Estimating the unsaturated hydraulic
conductivity from theoretical models using simple soil properties. Geoderma 65(1-2):
81-92.
Walkey, A. & Black, I.A. 1934. An examination of Degtjareff method for determination of soil organic matter
and a proposed modification of the chromic acid in soil analysis. Experimental
Journal of Soil Science 79: 459-465.
Wamelink, W., van Dobben,
H.F., Goedhart, P.W. & Jones-Walters, L.M. 2018.
The role of abiotic soil parameters as a factor in the success of invasive
plant species. Emerging Science Journal 2(6): 308-365.
Wamelink, G.W.W., Goedhart,
P.W. & Frissel, J.Y. 2014. Why some plant species
are rare? PLoS ONE 9(7): e102674.
Wang, N. & Chen, H.
2019. Increased nitrogen deposition increased the competitive effects of the
invasive plant Aegilops tauschii on wheat. Acta Physiologiae Plantarum 41(10): 176.
Wang,
R.L., Staehelin, C., Dayan, F.E., Song, Y.Y., Su,
Y.J. & Zeng, R.S. 2012. Simulated acid rain accelerates litter
decomposition and enhances the allelopathic potential of the invasive plant Wedelia trilobata (creeping daisy). Weed Science 60(3):
462-467.
Wardle, D.A., Bardgett,
R.D., Callaway, R.M. & Van der Putten, W.H. 2011.
Terrestrial ecosystem responses to species gains and losses. Science 332(6035): 1273-1277.
Weidenhamer, J.D. & Callaway, R.M. 2010. Direct
and indirect effects of invasive plants on soil chemistry and ecosystem
function. Journal of Chemical
Ecology 36(1): 59-69.
Wösten, J.H.M. & Van Genuchten, M.T.
1988. Using texture and other soil properties to predict the unsaturated soil
hydraulic functions. Soil Science Society
of America Journal 52(6): 1762-1770.
Zacharias, S. & Wessolek, G. 2007. Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Science Society of America Journal 71(1): 43-50.
*Pengarang untuk surat-menyurat; email: gfakomolafe@yahoo.com
|