Sains Malaysiana 50(2)(2021): 449-460
http://dx.doi.org/10.17576/jsm-2021-5002-16
Polarity
Difference and the Presence of Phytoestrogen Compounds Affecting Estrogenic
Activity of Peperomia pellucida Extracts
(Perbezaan Kekutuban dan Kehadiran Sebatian Fitoestrogen yang Mempengaruhi Aktiviti Estrogen Ekstrak Peperomia pellucida)
I GUSTI AGUNG AYU KARTIKA1,
MUHAMAD INSANU1, CATUR RIANI1, KYU HYUCK CHUNG2,
I KETUT ADNYANA1*
1School of Pharmacy, Bandung
Institute of Technology, 40132, Bandung, Indonesia
2School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of
Korea
Diserahkan: 16 November 2019/Diterima: 6 Julai 2020
ABSTRACT
Peperomia pellucida (L.) Kunth has been studied as an anti-osteoporotic
agent. However, there is no report about its estrogenic activity, which is
important for its anti-osteoporotic activity. Thus, the aim of this research
was to study the estrogenic potency of P. pellucida extract. The
estrogenic activity of P. pellucida extracts (n-hexane, ethyl acetate,
ethanol, and water extracts) was studied using E-screen assay and confirmed
with a molecular docking simulations. Further, the presence of phytoestrogen
compounds was identified using thin layer chromatography (TLC), TLC
densitometry, and high-performance liquid chromatography. The n-hexane, ethyl
acetate, and ethanol extracts at a concentration of 0.1 µg mL-1 exhibited a partial agonist effect, whereas the water extract showed full agonist effect at the similar
concentration. This activity was produced through a classical ligand-dependent
mechanism similar to estradiol. All of the extracts also showed antiestrogenic
activity. The TLC chromatogram evidently depicted the presence of quercetin and
stigmasterol in the n-hexane and ethyl acetate extracts. Apigenin and apigetrin at concentrations of 0.239±0.076 and 1.063±0.156
µg mg-1 extract, respectively, were present in the water extract. A
docking study on estrogen receptors confirmed that apigetrin prefer to produce estrogenic activity, whereas the other compounds can produce
both estrogenic and antiestrogenic activity. Hence, we suggest that the
bioactive compounds in the water extract are flavonoids, such as apigenin and apigetrin. In summary, the water extract is recommended to
be used as an estrogenic agent.
Keywords: Apigenin; apigetrin;
docking; estrogenic; extract; Peperomia pellucida
ABSTRAK
Peperomia
pellucida (L.) Kunth telah dikaji sebagai agen anti-osteoporosis. Walau bagaimanapun, tiada laporan mengenai aktiviti estrogennya yang penting untuk aktiviti anti-osteoporosisnya. Oleh itu, tujuan penyelidikan ini adalah untuk mengkaji potensi estrogen ekstrak P. pellucida. Aktiviti estrogen ekstrak P. pellucida (n-heksana, etil asetat, etanol dan ekstrak air) telah dikaji dengan menggunakan ujian E-screen dan disahkan dengan simulasi dok pengimejan. Selanjutnya, sebatian fitoestrogen telah dikenal pasti menggunakan kromatografi lapisan tipis
(KLT), KLT densitometri dan kromatografi cecair prestasi tinggi. Ekstrak n-heksana, etil asetat dan etanol pada kepekatan 0.1 μg mL-1 menunjukkan kesan agonis separa, manakala ekstrak air menunjukkan kesan agonis penuh pada kepekatan yang sama. Aktiviti ini dihasilkan melalui mekanisme ligan klasik yang sama seperti estradiol. Semua ekstrak juga menunjukkan aktiviti antiestrogenik. Kromatogram KLT jelas menggambarkan kehadiran quersetin dan stigmasterol dalam ekstrak n-heksana dan etil asetat. Apigenin dan apigetrin masing-masing pada kepekatan 0.239±0.076 dan 1.063±0.156 μg mg-1 ekstrak, hadir dalam ekstrak air. Kajian dok mengenai reseptor estrogen mengesahkan bahawa apigenin dan apigetrin lebih suka menghasilkan aktiviti estrogenik, sedangkan quersetin dan stigmasterol dapat menghasilkan kedua-dua aktiviti estrogenik dan antiestrogenik. Oleh itu, kami mencadangkan bahawa sebatian bioaktif dalam ekstrak air adalah flavonoid, seperti apigenin dan apigetrin. Ringkasnya, ekstrak air disyorkan untuk digunakan sebagai agen estrogen.
Kata kunci:
Apigenin; apigetrin; dok; ekstrak; estrogen; Peperomia pellucida
RUJUKAN
Baker, V.A., Hepburn, P.A., Kennedy, S.J.,
Jones, P.A., Lea, L.J., Sumpter, J.P. & Ashby, J. 1999. Safety evaluation
of phytosterol esters part 1 assessment of oestrogenicity using a combination of in vivo and in vitro assays. Food
and Chemical Toxicology 37(1): 13-22.
Berry, M., Metzger, D. & Chambon, P. 1990. Role of the two activating domains of the oestrogen receptor in the cell-type and
promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO Journal 9:
2811-2818.
Burns, K.A. & Korach,
K.S. 2012. Estrogen receptors and human disease: An update. Archives of Toxicology 86(10):
1491-1504.
Creusot, N., Budzinski,
H., Balaguer, P., Kinani, S., Porcher,
J.M. & Aït-Aïssa, S. 2013. Effect-directed
analysis of endocrine-disrupting compounds in multi-contaminated sediment:
Identification of novel ligands of estrogen and pregnane X receptors. Analytical and Bioanalytical Chemistry 405(8): 2553-2566.
Dauvois, S., White, R. & Parker, M.G. 1993.
The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic
shuttling. Journal of Cell Science 106(4): 1377-1388.
Gabay, O., Sanchez, C., Salvat,
C., Chevy, F., Breton, M., Nourissat, G., Wolf, C.,
Jacques, C. & Berenbaum, F. 2010. Stigmasterol: A
phytosterol with potential anti-osteoarthritic properties. Osteoarthritis
and Cartilage 18(1): 106-116.
Goto, T., Hagiwara, K., Shirai, N., Yoshida, K.
& Hagiwara, H. 2015. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in
ovariectomized mice. Cytotechnology 67(2): 357-365.
Gutendorf, B. & Westendorf,
J. 2001. Comparison of an array of in vitro assays for the assessment of
the estrogenic potential of natural and synthetic estrogens, phytoestrogens and
xenoestrogens. Toxicology 166(1-2):
79-89.
Hall, J.M., Couse, J.F. & Korach, K.S. 2001. The multifaceted mechanisms of estradiol
and estrogen receptor signaling. Journal of Biological Chemistry 276(40):
36869-36872.
Han, D.H., Denison, M.S., Tachibana, H.
& Yamada, K. 2002. Relationship between estrogen receptor-binding and
estrogenic activities of environmental estrogens and suppression by flavonoids. Bioscience, Biotechnology, and Biochemistry 66(7): 1479-1487.
Harborne, A.J. 1998. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis.
3rd ed. Netherlands: Springer Science & Business Media. pp. 16-29.
Hartati, S., Angelina, M., Dewiyanti,
I. & Meilawati, L. 2015. Isolation and
characterization compounds from hexane and ethyl acetate fractions of Peperomia pellucida L. Journal of
Tropical Life Science 5(3): 117-122.
Ju, Y.H., Clausen, L.M., Allred, K.F.,
Almada, A.L. & Helferich, W.G. 2004.
Beta-sitosterol, beta-sitosterol glucoside, and a mixture of beta-sitosterol
and beta-sitosterol glucoside modulate the growth of estrogen-responsive breast
cancer cells in vitro and in
ovariectomized athymic mice. The Journal of Nutrition 134(5): 1145-1151.
Kartika, I.G.A.A., Riani,
C., Insanu, M., Eljabbar,
L.F.D. & Adnyana, I.K. 2018. Sasaladaan (Peperomia pellucida [L.] Kunth.) extracts improve trabecular bone microarchitecture
in ovariectomy-induced osteoporotic rats. International Journal of Green
Pharmacy (IJGP) 12(04): 1-6.
Khalid, A.B. & Krum, S.A. 2016.
Estrogen receptors alpha and beta in bone. Bone 87: 130-135.
Khan, F., Peter, X.K., Mackenzie, R.M., Katsoulis, L., Gehring, R., Munro, O.Q., van Heerden, F.R.
& Drewes, S.E. 2004. Venusol from Gunnera perpensa:
Structural and activity studies. Phytochemistry 65(8): 1117-1121.
Kim, D.H., Moon, Y.S., Park, T.S. & Son, J.H.
2015a. Serotonins of safflower seeds play a key role in anti-inflammatory
effect in lipopolysaccharide-stimulated RAW 264.7 macrophages. Journal of
Plant Biotechnology 42(4): 364-369.
Kim, H.R., Lee, J.E., Jeong,
M.H., Choi, S.J., Lee, K. & Chung, KH. 2015b. Comparative evaluation of the
mutagenicity and genotoxicity of smoke condensate derived from Korean
cigarettes. Environmental Health and Toxicology 30: e2015014.
Kühnau, J. 1976. The flavonoids.
A class of semi-essential food components: Their role in human nutrition. World
Review of Nutrition and Dietetics 24: 117‐191.
Kuiper, G.G.J.M., Lemmen, J.G., Carlsson, B., Corton,
J.C., Safe, S.H., Saag, P.T., Burg, B. & Gustafsson, Å. 1998. Interaction of
estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139(10): 4252-4263.
Kurniawan, A., Saputri,
F., Rissyelly, Ahmad, I. & Mun’im,
A. 2016. Isolation of angiotensin converting enzyme (ACE) inhibitory activity
quercetin from Peperomia pellucida. International
Journal of PharmTech Research 9(7): 115-121.
Lecomte, S., Demay, F., Ferrière, F. & Pakdel, F.
2017. Phytochemicals targeting estrogen receptors: Beneficial rather than
adverse effects? International Journal of Molecular Sciences 18(7):
1380-1400.
MacGregor, J.I. & Jordan, V.C. 1998.
Basic guide to the mechanisms of antiestrogen action. Pharmacological
Reviews 50(2): 151-196.
Mariotti, K.C., Schmitt, G.C., Barreto, F.,
Fortunato, R.E., Singer, R.B., Dallegrave, E., Leal,
M.B. & Limberger, R.P. 2011. Evaluation of
anti-estrogenic or estrogenic activities of aqueous root extracts of Gunnera manicata L. Brazilian
Journal of Pharmaceutical Sciences 47(3): 601-604.
Miodini, P., Fioravanti,
L., Fronzo, G.D. & Cappelletti, V. 1999. The two phyto-oestrogens genistein and quercetin exert different
effects on oestrogen receptor function. British
Journal of Cancer 80(8):
1150-1155.
Mostrom, M. & Tim, J.E. 2018.
Phytoestrogens - An overview. ScienceDirect topics. 2018.
https://www.sciencedirect.com/topics/agricultural-and-biological
sciences/phytoestrogens. Accessed on 21 August 2018.
Nelson, A.W., Tilley, W.D., Neal, D.E.
& Carroll, J.S. 2014. Estrogen receptor beta in prostate cancer: Friend or
foe? Endocrine-Related Cancer 21(4): T219-T234.
Ngueguim, F.T., Khan, M.P., Donfack, J.H., Tewari, D., Dimo,
T., Kamtchouing, P., Maurya, R. & Chattopadhyay,
N. 2013. Ethanol extract of Peperomia
pellucida (Piperaceae) promotes fracture healing
by anabolic effect on osteoblasts. Journal of Ethnopharmacology 148(1):
62-68.
Florence, N.T., Huguette, S.T.S., Hubert, D.J., Raceline, G.K., Desire, D.D.P., Pierre, K. & Theophile,
D. 2017. Aqueous extract of Peperomia pellucida (L.) HBK accelerates
fracture healing in Wistar rats. BMC
Complementary and Alternative Medicine 17(1): 188-196.
Oh, S.M., Ryu, B.T. & Chung, K.H. 2008.
Identification of estrogenic and antiestrogenic activities of respirable diesel
exhaust particles by bioassay-directed fractionation. Archives of Pharmacal Research 31(1): 75-82.
Oršolić, N., Jeleč,
Z., Nemrava, J., Balta, V., Gregorović,
G. & Jeleč, D. 2018. Effect of quercetin on
bone mineral status and markers of bone turnover in retinoic acid-induced
osteoporosis. Polish
Journal of Food and Nutrition Sciences 68(2): 149-162.
Peng, J., Sengupta, S. & Jordan, V.C.
2009. Potential of selective estrogen receptor modulators as treatments and
preventives of breast cancer. Anti-Cancer Agents in Medicinal Chemistry 9(5):
481-499.
Perez, P., Pulgar,
R., Olea-Serrano, F., Villalobos, M., Rivas, A., Metzler, M., Pedraza, V. &
Olea, N. 1998. The estrogenicity of bisphenol
A-related diphenylalkanes with various substituents
at the central carbon and the hydroxy groups. Environmental Health
Perspectives 106(3): 167-174.
Powell, E., Shanle, E.,
Brinkman, A., Li, J., Keles, S., Wisinski,
K.B., Huang, W. & Xu, W. 2012. Identification of estrogen receptor dimer
selective ligands reveals growth-inhibitory effects on cells that co-express
ERα and ERβ. PLoS ONE 7(2):
e30993.
Powers, C.N. & Setzer, W.N. 2015. A
molecular docking study of phytochemical estrogen mimics from dietary herbal
supplements. In Silico Pharmacology 3(4): 1-63.
Putri, C.A., Kartika, I.G.A.A. & Adnyana, I.K. 2016. Preventive effect of Peperomia pellucida (L.) Kunth herbs on ovariectomy-induced osteoporotic rats. Journal of Chinese Pharmaceutical Sciences 25(7): 546-551.
Resende, F.A., de Oliveira, A.P.S., de Camargo,
M.S., Vilegas, W. & Varanda,
E.A. 2013. Evaluation of estrogenic potential of flavonoids using a recombinant
yeast strain and MCF7/BUS cell proliferation assay. PLoS ONE 8(10): e74881.
Riggs, B.L. 2000. The
mechanisms of estrogen regulation of bone resorption. The Journal of
Clinical Investigation 106(10):
1203-1204.
Sakamoto, T., Horiguchi,
H., Oguma, E. & Kayama, F. 2010. Effects of diverse dietary phytoestrogens
on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast
cancer cells. The Journal of Nutritional Biochemistry 21(9): 856-864.
Shang, Y. & Brown, M. 2002. Molecular
determinants for the tissue specificity of SERMs. Science 295(5564): 2465-2468.
Singh, B., Mense, S.M., Bhat, N.K., Putty,
S., Guthiel, W.A., Remotti, F. & Bhat, H.K. 2010. Dietary quercetin
exacerbates the development of estrogen-induced breast tumors in female ACI
rats. Toxicology and Applied Pharmacology 247(2): 83-90.
Triutomo, D.H., Miranda, A., Tamba, L.J.
& Lukitaningsih, E. 2016. Estrogenic effect ethanol extract corn silk
(stigma maydis) on bone density and histology femur profiles in ovariectomized
rats female sprague dawley strain. Indonesian Journal of Cancer
Chemoprevention 7(3): 104-109.
Williams, C., Edvardsson, K., Lewandowski,
S.A., Ström, A. & Gustafsson, J.A. 2008. A genome-wide study of the
repressive effects of estrogen receptor beta on estrogen receptor alpha
signaling in breast cancer cells. Oncogene 27(7): 1019-1032.
Xu, S., Li, N., Ning, M.M., Zhou, C.H.,
Yang, Q.R. & Wang, M.W. 2006. Bioactive compounds from Peperomia pellucida. Journal of Natural Products 69(2): 247-250.
Yaşar, P., Ayaz, G., User, S.D.,
Güpür, G. & Muyan, M. 2016. Molecular mechanism of estrogen-estrogen
receptor signaling. Reproductive Medicine and Biology 16(1): 4-20.
*Pengarang untuk surat-menyurat; email: ketut@fa.itb.ac.id
|