Sains Malaysiana 50(2)(2021): 549-557

http://dx.doi.org/10.17576/jsm-2021-5002-25

 

On Diameter of Subgraphs of Commuting Graph in Symplectic Group for Elements of Order Three

(Diameter Subgraf bagi Graf Kalis Tukar Tertib dalam Kumpulan Simplektik bagi Unsur Berperingkat Tiga)

 

SUZILA MOHD KASIM1 & ATHIRAH NAWAWI1,2*

 

1Institute for Mathematical Researc, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 1 April 2020/Diterima: 4 Ogos 2020

 

ABSTRACT

Suppose  be a finite group and  be a subset of . The commuting graph, denoted by , is a simple undirected graph, where  being the set of vertex and two distinct vertices  are joined by an edge if and only if . The aim of this paper was to describe the structure of disconnected commuting graph by considering a symplectic group and a conjugacy class of elements of order three. The main work was to discover the disc structure and the diameter of the subgraph as well as the suborbits of symplectic groups ,  and . Additionally, two mathematical formulas are derived and proved, one gives the number of subgraphs based on the size of each subgraph and the size of the conjugacy class, whilst the other one gives the size of disc relying on the number and size of suborbits in each disc.

 

Keywords: Commuting graph; conjugacy class; disconnected graph; symplectic group

 

ABSTRAK

Andaikan  adalah satu kumpulan terhingga dan  adalah satu subset bagi . Graf kalis tukar tertib, ditatatandakan dengan  adalah graf mudah tidak terarah, yang  menjadi set bucu dan dua bucu berbeza  disambungkan oleh satu garisbucu jika dan hanya jika . Tujuan makalah ini adalah untuk memperincikan struktur graf kalis tukar tertib tidak berkait dengan mempertimbangkan kumpulan simplektik dan kelas konjugasi dengan unsur berperingkat tiga. Kerja utama adalah untuk memperoleh struktur cakera dan diameter subgraf tersebut juga suborbit bagi kumpulan simplektik ,  dan . Di samping itu, dua formula matematik diterbitkan dan dibuktikan, satu daripadanya memberikan bilangan subgraf berdasarkan kepada saiz setiap subgraf dan saiz kelas konjugasi, manakala yang satu lagi memberikan saiz cakera bergantung pada bilangan dan saiz suborbit dalam setiap cakera.

 

Kata kunci: Graf kalis tukar tertib; graf tidak berkait; kelas konjugasi; kumpulan simplektik

 

RUJUKAN

Abd Ghafur Bin Ahmad & Yousof Gheisari. 2012. Components in graphs of diagram groups over the union of two semigroup presentations of integers. Sains Malaysiana41(1): 129-131.

Bates, C., Bundy, D., Hart, S. & Rowley, P. 2007. Commuting involution graphs for sporadic simple groups. J. Algebra 316(2): 849-868.

Bates, C., Bundy, D., Perkins, S. & Rowley, P. 2004. Commuting involution graphs in special linear groups. Comm. Algebra 32(11): 4179-4196.

Bates, C., Bundy, D., Perkins, S. & Rowley, P. 2003a. Commuting involution graphs for symmetric groups. J. Algebra 266(1): 133-153.

Bates, C., Bundy, D., Perkins, S. & Rowley, P. 2003b. Commuting involution graphs in finite Coxeter groups. J. Group Theory 6(4): 461-476.

Betten, A., Kohnert, A., Laue, R. & Wassermann, A. 2001. Algebraic combinatorics and applications. In The Energy of a Graph: Old and New Results, edited by Gutman, I. Berlin, Heidelberg: Springer. pp. 196-211.

Bosma, W., Cannon, J.J. & Playoust, C. 1997. The magma algebra system I: The user language. J. Symbolic Comput. 24(3-4): 235-265.

Brauer, R. & Fowler, K.A. 1955. On groups of even order. Ann. of Math. 62(3): 565-583.

Fischer, B. 1971. Finite groups generated by 3-transpositions. I Invent. Math. 13(3): 232-246.

Loh, S.L., Salleh, S. & Sarmin, N.H. 2014. Linear-time heuristic partitioning technique for mapping of connected graphs into single-row networks. Sains Malaysiana 43(8): 1263-1269.

Malik, D.S., Sen, M.K. & Ghosh, S. 2014. Introduction to Graph Theory. Singapore: Cengage Learning Asia Pte Ltd.

Nawawi, A. 2013. Commuting graphs for elements of order three in finite groups. University of Manchester. Ph.D. Thesis (Unpublished).

Nawawi, A. & Rowley, P. 2015. On commuting graphs for elements of order 3 in symmetric groups. Elec. J. Comb. 22(1): P1.21.

Nawawi, A., Husain, S.K.S. & Ariffin, M.R.K. 2019. Commuting graphs, C(G, X) in symmetric groups Sym(n) and its connectivity. Symmetry 11(9): 1178.

Wang, Y-F. & Ma, N. 2016. Orderings a class of unicyclic graphs with respect to hosoya and merrifield-simmons index. Sains Malaysiana 45(1): 55-58.

Wilson, R.A. 2009. Graduate Texts in Mathematics: The Finite Simple Groups. London, England: Springer-Verlag. pp. 41-110.

Wilson, R.A., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J. & Abbott, R. 2017. http://brauer.maths.qmul.ac.uk/Atlas/v3/. World-wide-web atlas of finite group representations. 

 

*Pengarang untuk surat-menyurat; email: athirah@upm.edu.my

 

 

 

sebelumnya