Sains
Malaysiana 50(3)(2021): 829-837
http://doi.org/10.17576/jsm-2021-5003-23
Comparative Evaluation of the Effects of Atorvastatin and
Lovastatin on the Pharmacokinetics of Aliskiren in Rats
(Penilaian Perbandingan Kesan Atorvastatin dan Lovastatin
terhadap Farmakokinetik Aliskiren pada Tikus)
AMAL
SHARAF1, KAMAL A. EL-SHAZLY1, AMERA ABD EL LATIF1,
KHALED S. ABDELKAWY2, FAWZY ELBARBRY3 & HAZIM O.
KHALIFA1,4*
1Department of Pharmacology, Faculty
of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh,
33516 Egypt
2Faculty of Pharmacy, Kafrelsheikh
University, Kafr El-Sheikh, 33516 Egypt
3School of Pharmacy, Pacific
University, Hillsboro OR, 97123 USA
4Department of Infectious Diseases,
Graduate School of Medicine, International University of Health and Welfare,
Narita 286-8686, Japan
Diserahkan:
28 Mei 2020/Diterima: 7 Ogos 2020
ABSTRACT
The worldwide increase in the number patients with high
blood pressure poses serious clinical challenges. Little is known regarding the
interactions between the various drugs used to treat heart diseases. The
present study evaluates and compares the effects of administration of multiple
doses of atorvastatin or lovastatin on the pharmacokinetics of aliskiren in
rats in an effort to determine their underlying mechanisms. A total of 90
healthy female albino rats were randomly divided into three groups. All groups
were treated with aliskiren by oral gavage at 8.57 mg/kg daily for 14 days. In
addition to aliskiren, group 2 received atorvastatin at a dose of 1.143 mg/kg
for 7 days. In addition to aliskiren, group 3 received lovastatin at a dose of
1.143 mg/kg for 7 days. After blood samples were collected at specific time intervals,
aliskiren concentrations were determined using liquid chromatography-tandem
mass spectrometry. Relative to the control treatment, atorvastatin treatment
resulted in non-significant alterations in the pharmacokinetic parameters of
aliskiren. In contrast, lovastatin resulted in a significant increase in the
area under the curve, peak plasma concentration, and elimination half-life by
21, 10, and 72%, respectively. Additionally, lovastatin significantly reduced
oral clearance by 23%. Inhibition of aliskiren metabolism via the hepatic CYP3A
subfamily and/or inhibition of intestinal P-glycoprotein and/or the CYP3A
subfamily was identified as a possible mechanism. This study is the first to
report that only lovastatin causes a marked increase in aliskiren bioavailability.
Caution should be taken when lovastatin and aliskiren are administrated
concomitantly in clinical practice.
Keywords:
Coronary artery disease; drug interactions; high blood pressure; statins
ABSTRAK
Peningkatan jumlah pesakit darah tinggi di seluruh dunia
menimbulkan cabaran klinikal yang serius. Tidak banyak yang diketahui mengenai
interaksi antara pelbagai dadah yang digunakan untuk merawat penyakit jantung. Kajian ini menilai
dan membandingkan kesan pemberian pelbagai dos atorvastatin atau lovastatin
terhadap farmakokinetik aliskiren pada tikus dalam usaha untuk menentukan
mekanisme asasnya. Sebanyak 90 tikus albino betina yang sihat dibahagikan
secara rawak kepada tiga kumpulan. Semua kumpulan dirawat dengan aliskiren
dengan pemberian oral sebanyak 8.57 mg/kg setiap hari selama 14 hari. Sebagai
tambahan kepada aliskiren, kumpulan 2 menerima atorvastatin pada dos 1.143
mg/kg selama 7 hari. Sebagai tambahan kepada aliskiren, kumpulan 3 menerima
lovastatin pada dos 1.143 mg/kg selama 7 hari. Setelah sampel darah dikumpulkan
pada selang waktu tertentu, kepekatan aliskiren ditentukan menggunakan
spektrometri jisim kromatografi cair-tandem. Berkaitan dengan rawatan kawalan,
rawatan atorvastatin mengakibatkan perubahan yang tidak ketara pada parameter
farmakokinetik aliskiren. Sebaliknya, lovastatin menghasilkan peningkatan yang
signifikan di kawasan di bawah kurva, kepekatan plasma puncak dan penghilangan
separuh hayat masing-masing sebanyak 10, 21 dan 72%. Selain itu, lovastatin
mengurangkan pelepasan oral dengan ketara sebanyak 23%. Sebaliknya, lovastatin
menghasilkan peningkatan yang signifikan di kawasan di bawah kurva, kepekatan
plasma puncak, dan penghilangan separuh hayat masing-masing sebanyak 21, 10 dan
72%. Selain itu, lovastatin mengurangkan pelepasan oral dengan ketara sebanyak
23%. Perencatan metabolisme aliskiren melalui subfamili CYP3A hepatik dan/atau
perencatan P-glikoprotein usus dan/atau subfamili CYP3A dikenal pasti sebagai
mekanisme yang berkemungkinan. Kajian ini adalah yang pertama melaporkan bahawa
hanya lovastatin yang menyebabkan peningkatan bioavailabiliti aliskiren yang
ketara. Perhatian harus diambil ketika lovastatin dan aliskiren diberikan
bersamaan dalam praktik klinikal.
Kata
kunci: Interaksi dadah; penyakit arteri koronari; statin; tekanan darah tinggi
RUJUKAN
Abbasi, M., Valizadeh, H., Ham-ishekar, H., Amirkhiz, M.B.
& Milani, P.Z. 2016. In vitro and in situ effects of atorvastatin and
ezetimibe on P-glycoprotein expression and function. Bangladesh Journal of Pharmacology 11(4): 911-919.
Abdelkawy,
K.S., Donia, A.M., Turner, R.B. & Elbarbry, F. 2016. Effects of lemon and
seville orange juices on the pharmacokinetic properties of sildenafil in
healthy subjects. Drugs in R&D 16(3): 271-278.
Ballantyne,
C.M., Corsini, A., Davidson, M.H., Holdaas, H., Jacobson, T.A., Leitersdorf,
E., März, W., Reckless, J.P. & Stein, E.A. 2003. Risk for myopathy with
statin therapy in high-risk patients. Archives
of Internal Medicine 163(5): 553-564.
Benjamin,
E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das, S.R., Deo, R., de Ferranti,
S.D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C.R., Jiménez, M.C.,
Jordan, L.C., Judd, S.E., Lackland, D., Lichtman, J.H., Lisabeth, L., Liu, S.,
Longenecker, C.T., Mackey, R.H., Matsushita, K., Mozaffarian, D., Mussolino,
M.E., Nasir, K., Neumar, R.W., Palaniappan, L., Pandey, D.K., Thiagarajan,
R.R., Reeves, M.J., Ritchey, M., Rodriguez, C.J., Roth, G.A., Rosamond, W.D.,
Sasson, C., Towfighi, A., Tsao, C.W., Turner, M.B., Virani, S.S., Voeks, J.H.,
Willey, J.Z., Wilkins, J.T., Wu, J.H., Alger, H.M., Wong, S.S., Muntner, P.
& American Heart Association Statistics Committee and Stroke Statistics
Subcommittee. 2017. Heart disease and stroke statistics-2017 update: A report
from the American Heart Association. Circulation 135(10): e146-e603.
Bizukojc, M.
& Ledakowicz, S. 2007. A macrokinetic modelling of the biosynthesis of
lovastatin by Aspergillus terreus. Journal of Biotechnology 130(4):
422-435.
Blonk, M.,
van Beek, M., Colbers, A., Schouwenberg, B. & Burger, D. 2015.
Pharmacokinetic drug-drug interaction study between raltegravir and
atorvastatin 20 mg in healthy volunteers. Journal
of Acquired Immune Deficiency Syndromes 69(1): 44-51.
Burckhardt,
B.B., Ramusovic, S., Tins, J. & Laeer, S. 2013. Determination of aliskiren
in human serum quantities by HPLC-tandem mass spectrometry appropriate for
pediatric trials. Biomedical
Chromatography: BMC 27(4): 477-486.
Choi, D.H.,
Chung, J.H. & Choi, J.S. 2010. Pharmacokinetic interaction between oral
lovastatin and verapamil in healthy subjects: Role of P-glycoprotein inhibition
by lovastatin. European Journal of
Clinical Pharmacology 66(3): 285-290.
Chung, J.W.,
Yang, S.H. & Choi, J.S. 2010. Effects of lovastatin on the pharmacokinetics
of nicardipine in rats. Biopharmaceutics
and Drug Disposition 31(7): 436-441.
Ebert, U.,
Oertel, R. & Kirch, W. 2000. Influence of grapefruit juice on scopolamine
pharmacokinetics and pharmacodynamics in healthy male and female subjects. International Journal of Clinical
Pharmacology and Therapeutics 38(11): 523-531.
El-Sisi, A.A., Hegazy, S.K., Salem, K.A. & AbdElkawy,
K.S. 2013. Atorvastatin improves erectile dysfunction in patients initially
irresponsive to sildenafil by the activation of endothelial nitric oxide
synthase. International Journal of
Impotence Research 25(4): 143-148.
Foley-Comer,
A.J., Young, A.M., Russell-Yarde, F. & Jordan, P. 2011. Aleglitazar, a
balanced PPARα/γ agonist, has no clinically relevant pharmacokinetic
interaction with high-dose atorvastatin or rosuvastatin. Expert Opinion on Investigational Drugs 20(1): 3-12.
Guo, Y.,
Zeng, J., Li, Q., Li, P., Luo, F.M., Zhang, W.Z., Lu, Y.X., Wang, Q., Zhang,
W., Zeng, Z.P. & Liu, L.S. 2020. Preliminary clinical study of direct renin
inhibitor aliskiren in the treatment of severe COVID-19 patients with
hypertension. Zhonghua Nei Ke Za Zhi 59:
E011.
Hong, S.P.,
Yang, J.S., Han, J.Y., Ha, S.I., Chung, J.W., Koh, Y.Y., Chang, K.S. &
Choi, D.H. 2011. Effects of lovastatin on the pharmacokinetics of diltiazem and
its main metabolite, desacetyldiltiazem, in rats: possible role of cytochrome
P450 3A4 and P-glycoprotein inhibition by lovastatin. Journal of Pharmacy and Pharmacology 63(1): 129-135.
Hong, S.P.,
Chang, K.S., Koh, Y.Y., Choi, D.H. & Choi, J.S. 2009. Effects of lovastatin
on the pharmacokinetics of verapamil and its active metabolite, norverapamil in
rats: Possible role of P-glycoprotein inhibition by lovastatin. Archives of Pharmacal Research 32(10):
1447-1452.
Hong, S.P.,
Chang, K.S., Choi, D.H. & Choi, J.S. 2007. Effect of atorvastatin on the
pharmacokinetics of diltiazem and its main metabolite, desacetyldiltiazem, in
rats. Archives of Pharmacal Research 30(1): 90-95.
Hulskotte,
E.G., Feng, H.P., Xuan, F., Gupta, S., van Zutven, M.G., O’Mara, E., Wagner,
J.A. & Butterton, J.R. 2013. Pharmacokinetic evaluation of the interaction
between hepatitis C virus protease inhibitor Boceprevir and
3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and
pravastatin. Antimicrobial Agents and
Chemotherapy 57(6): 2582-2588.
Jacobsen,
W., Kuhn, B., Soldner, A., Kirchner, G., Sewing, K.F., Kollman, P.A., Benet,
L.Z. & Christians, U. 2000. Lactonization is the critical first step in the
disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor
atorvastatin. Drug Metabolism and
Disposition: The Biological Fate of Chemicals 28(11): 1369-1378.
Kashihara,
Y., Ieiri, I., Yoshikado, T., Maeda, K., Fukae, M., Kimura, M., Hirota, T.,
Matsuki, S., Irie, S., Izumi, N., Kusuhara, H. & Sugiyama, Y. 2017.
Small-dosing clinical study: Pharmacokinetic, pharmacogenomic (SLCO2B1 and
ABCG2), and interaction (atorvastatin and grapefruit juice) profiles of 5
probes for OATP2B1 and BCRP. Journal of
Pharmaceutical Sciences 106(9): 2688-2694.
Lee, C.K.,
Choi, J.S. & Choi, D.H. 2015. Effects of HMG-CoA reductase inhibitors on the
pharmacokinetics of nifedipine in rats: Possible role of P-gp and CYP3A4
inhibition by HMG-CoA reductase inhibitors. Pharmacological
Reports 67(1): 44-51.
McKeand, W.,
Baird-Bellaire, S., Ermer, J. & Patat, A. 2018. A study of the potential
interaction between Bazedoxifene and atorvastatin in healthy postmenopausal
women. Clinical Pharmacology in Drug
Development 7(8): 911-919.
Merai, R.,
Siegel, C., Rakotz, M., Basch, P., Wright, J., Wong, B., Thorpe, P.DHSc. &
Thorpe, P. 2016. CDC grand rounds: A public health approach to detect and
control hypertension. MMWR. Morbidity and
Mortality Weekly Report 65(45): 1261-1264.
Mourad, J.
& Levy, B.I. 2020. Interaction between RAAS inhibitors and ACE2 in the
context of COVID-19. Nature Reviews
Cardiology 17(5): 313-313.
Omar, A.
2020. Molecular docking reveals the potential of aliskiren, dipyridamole,
mopidamol, rosuvastatin, rolitetracycline and metamizole to inhibit COVID-19
virus main protease. Chemrxiv.
Preprint.
Pantzaris,
N., Karanikolas, E., Tsiotsios, K. & Velissaris, D. 2017. Renin inhibition
with aliskiren: A decade of clinical experience. Journal of Clinical Medicine 6(6): 61-80.
Patiño-Rodríguez,
O., Torres-Roque, I., Martínez-Delgado, M., Escobedo-Moratilla, A. &
Pérez-Urizar, J. 2014. Pharmacokinetic non-interaction analysis in a fixed-dose
formulation in combination of atorvastatin and ezetimibe. Frontiers in Pharmacology 5(261): 1-9.
Pool, J.L.
2007. Direct renin inhibition: Focus on aliskiren. Journal of Managed Care Pharmacy 13(8)(Supp B): 21-33.
Prueksaritanont,
T., Tang, C., Qiu, Y., Mu, L., Subramanian, R. & Lin, J.H. 2002. Effects of
fibrates on metabolism of statins in human hepatocytes. Drug Metabolism and Disposition: The Biological Fate of Chemicals 30(11): 1280-1287.
Sakaeda, T.,
Fujino, H., Komoto, C., Kakumoto, M., Jin, J.S., Iwaki, K., Nishiguchi, K.,
Nakamura, T., Okamura, N. & Okumura, K. 2006. Effects of acid and lactone
forms of eight HMG‐CoA Reductase Inhibitors on CYP‐mediated
metabolism and MDR1‐mediated transport. Pharmaceutical Research 23(3): 506-512.
Sameer, E.
2019. Potentiation of cisplatin activity in colorectal cancer cells by
lovastatin. Journal of Pharmaceutical
Research International 28(1): 1-6.
Sarich,
T.C., Schützer, K.M., Dorani, H., Wall, U., Kalies, I., Ohlsson, L. &
Eriksson, U.G. 2004. No pharmacokinetic or pharmacodynamic interaction between
atorvastatin and the oral direct thrombin inhibitor ximelagatran. Journal of Clinical Pharmacology 44(8):
928-934.
Saw, J.,
Steinhubl, S.R., Berger, P.B., Kereiakes, D.J., Serebruany, V.L., Brennan, D.,
Topol, E.J. & Clopidogrel for the Reduction of Events During Observation
Investigators. 2003. Lack of adverse clopidogrel-atorvastatin clinical
interaction from secondary analysis of a randomized, placebo-controlled
clopidogrel trial. Circulation 108(8): 921-924.
Struijker-Boudier,
H. 2017. Should a statin be given to all hypertensive patients? Artery Research 18(C): 66-68.
Tapaninen, T., Backman, J.T., Kurkinen, K.J., Neuvonen, P.J.
& Niemi, M. 2011. Itraconazole, a P-glycoprotein and CYP3A4 inhibitor,
markedly raises the plasma concentrations and enhances the renin-inhibiting
effect of aliskiren. Journal of Clinical
Pharmacology 51(3): 359-367.
Tod, M.,
Goutelle, S., Bleyzac, N. & Bourguignon, L. 2019. A generic model for
quantitative prediction of interactions mediated by efflux transporters and
cytochromes: Application to p-glycoprotein and cytochrome 3A4. Clinical Pharmacokinetics 58(4):
503-523.
Vaidyanathan,
S., Jarugula, V., Dieterich, H.A., Howard, D. & Dole, W.P. 2008. Clinical
pharmacokinetics and pharmacodynamics of aliskiren. Clinical Pharmacokinetics 47(8): 515-531.
Vats, R.,
Varanasi, K.V., Arla, R., Veeraraghvan, S. & Rajak, S. 2012. Drug-drug
interaction study to assess the effects of atorvastatin co-administration on
pharmacokinetics and anti-thrombotic properties of cilostazol in male Wistar
rats. Biopharmaceutics and Drug
Disposition 33(8): 455-465.
Waldmeier,
F., Glaenzel, U., Wirz, B., Oberer, L., Schmid, D., Seiberling, M., Valencia,
J., Riviere, G.J., End, P. & Vaidyanathan, S. 2007. Absorption,
distribution, metabolism, and elimination of the direct renin inhibitor
aliskiren in healthy volunteers. Drug
Metabolism and Disposition: The Biological Fate of Chemicals 35(8):
1418-1428.
Wang, Y.,
Jin, Y., Yun, X., Wang, M., Dai, Y. & Xia, Y. 2018. Co-administration with
simvastatin or lovastatin alters the pharmacokinetic profile of sinomenine in
rats through cytochrome P450-mediated pathways. Life Sciences 209: 228-235.
Wanitchanont,
A., Somparn, P., Vadcharavivad, S., Chancharoenthana, W., Townamchai, N.,
Praditpornsilpa, K. & Avihingsanon, Y. 2014. Effects of atorvastatin
on the pharmacokinetics of everolimus among kidney transplant recipients. Transplantation Proceedings 46(2):
418-421.
Wood, J.M.,
Maibaum, J., Rahuel, J., Grütter, M.G., Cohen, N.C., Rasetti, V., Rüger, H.,
Göschke, R., Stutz, S., Fuhrer, W., Schilling, W., Rigollier, P., Yamaguchi,
Y., Cumin, F., Baum, H.P., Schnell, C.R., Herold, P., Mah, R., Jensen, C.,
O’Brien, E., Stanton, A. & Bedigian, M.P. 2003. Structure-based design of
aliskiren, a novel orally effective renin inhibitor. Biochemical and Biophysical Research Communications 308(4):
698-705.
Yoon, S.S.,
Carroll, M.D. & Fryar, C.D. 2015. Hypertension prevalence and control among
adults: United States, 2011-2014. NCHS
Data Brief 220: 1-8.
Zhao, C.,
Vaidyanathan, S., Yeh, C.M., Maboudian, M. & Armin Dieterich, H. 2006.
Aliskiren exhibits similar pharmacokinetics in healthy volunteers and patients
with Type 2 diabetes mellitus. Clinical
Pharmacokinetics 45(11): 1125-1134.
*Pengarang
untuk surat-menyurat; email: hazem.khalifa1@vet.kfs.edu.eg
|