Sains Malaysiana 50(3)(2021): 849-858

http://doi.org/10.17576/jsm-2021-5003-25

 

Effect of Aging Heat Treatment on Corrosion Behavior and Corrosion Kinetics of 17-4PH Stainless Steel in Artificial Saliva

(Kesan Rawatan Panas Penuaan terhadap Tingkah Laku Kakisan dan Kinetik Kakisan Keluli Tahan Karat 17-4PH dalam Air Liur Buatan)

 

ONTHIDA KOSASANG1,2*, MANUTCHAYA WONGKAEWMOON2 & SOMWAN CHUMPHONGPHAN1,2

 

1School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

 

2Center of Innovative Materials for Sustainability (iMatS), School of Science, Mae Fah Luang Universit, Chiang Rai 57100, Thailand

 

Diserahkan: 11 Jun 2020/Diterima: 7 September 2020

 

ABSTRACT

The corrosion behavior of the sintered 17-4PH stainless steel samples aged at different conditions in artificial saliva was studied using the method of electrochemical and weight loss after exposure for various periods of time. The results showed that the samples aged at 480 °C for 1 h exhibited the highest corrosion resistance. The pitting corrosion was predominantly initiated from existing, isolated pores and further accelerated. The corrosion kinetics trend is found to be more consistent with a bimodal function form rather than the classical power-law function. 

 

Keywords: 17-4PH stainless steel; artificial saliva; corrosion behavior; corrosion kinetics

 

ABSTRAK

Sifat kakisan sampel keluli kalis karat 17-4PH dalam air liur tiruan telah dikaji menggunakan kaedah elektrokimia dan kehilangan berat selepas terdedah pada jangka masa yang berbeza. Keputusan yang diperoleh menunjukkan bahawa sampel pada 480 °C selama 1 jam mempunyai rintangan kakisan tertinggi. Kakisan pempitan adalah dominan bermula daripada liang yang sedia ada dan terus dipercepatkan. Corak kinetik kakisan didapati lebih berpadan dengan fungsi bimodal berbanding dengan fungsi hukum-kuasa klasik.

 

Kata kunci: Air liur tiruan; keluli kalis karat 17-4PH; kinetik kakisan; sifat kakisan

 

RUJUKAN

Al-Moubaraki, A.H. & Al-Rushud, H.H. 2018. The red sea as a corrosive environment: Corrosion rates and corrosion mechanism of aluminum alloys 7075, 2024, and 6061. International Journal of Corrosion 2018: 1-16.

Al-Moubaraki, A.H., Al-Judaibi, A. & Asiri, M. 2014. Corrosion of C-steel in the red sea: Effect of immersion time and inhibitor concentration. International Journal of Electrochemical Science 10(5): 4252-4278.

Chung, C. & Tzeng, Y. 2019. Effects of aging treatment on the precipitation behavior of ε-Cu phase and mechanical properties of metal injection molding 17-4PH stainless steel. Materials Letters 237: 228-231.

Costa, I., Franco, C.V., Kunioshi, C.T. & Rossi, J.L. 2006. Corrosion resistance of injection-molded 17-4PH steel in sodium chloride solution. Corrosion 62(4): 357-365.

Escobar, C.G.N., Domingues, J.A., Gomes, J.C. & Cohelo, U. 2017. Effects of diferent salivary pH on the surface and roughness of different orthodontic wires. Journal of Research in Dentistry 2(6): 527-536.

Frankel, G.S. 1998. Pitting corrosion of metals a review of the critical factors. Journal of The Electrochemical Society 145(8): 2186-2198.

Gülsoy, H.Ö., Salman, S. & Özbek, S. 2004. Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder. Journal of Materials Science 39(15): 4835-4840.

He, S. & Jiang, D. 2018. Electrochemical behavior and properties of passive films on 304 stainless steel under high temperature and stress conditions. International Journal of Electrochemical Science 13: 5832-5849.

Hsiao, C.N., Chiou, C.S. & Yang, J.R. 2002. Aging reactions in a 17-4PH stainless steel. Materials Chemistry and Physics 74(2): 134-142.

Li, L., Wang, J., Yan, J., Fan, H., Zeng, Bo., Li, X. & Dong, H. 2020. Low-temperature oxy-nitriding of AISI 304 austenitic stainless steel for combat corrosion and wear in HCl medium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 51(1): 419-435.

Liu, D., Liu, D., Zhang, X., Liu, C. & Ao, N. 2018. Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Materials Science and Engineering A 726: 69-81.

Manonukul, A., Likityingwara, W., Rungkiatnawin, P., Muenya, N., Amoranan, S., Kittinantapol, W. & Supapunt, S. 2007. Study of recycled and virgin compounded metal injection moulded feedstock for stainless steel 630. Journal of Solid Machanic and Material Engineering 1(4): 411-420.

Melchers, R.E. 2019. Predicting long-term corrosion of metal alloys in physical infrastructure. npj Materials Degradation 3(1): 1-7.

Melchers, R.E. 2014. Bi-modal trend in the long-term corrosion of aluminium alloys. Corrosion Science 82: 239-247.

Morcillo, M., Chico, B., Díaz, I., Cano, H. & Fuente, D.D.L 2013. Atmospheric corrosion data of weathering steels. A review. Corrosion Science 77: 6-24.

Mudali, U.K., Bhaduri, A.K. & Gnanamoorthy, J.B. 1990. Localised corrosion behaviour of 17-4 PH stainless steel. Materials Science and Technology 6(5): 475-481.

Murayama, M., Katayama, Y. & Hono, K. 1999. Microstructural evolution in a 17-4PH stainless steel after aging at 400°C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 30(2): 345-353.

Raja, K.S. & Prasad, R.K. 1995. Intergranular and general corrosion behaviour of 17‐4PH weldments. Materials and Corrosion 46(9): 534-538.

Renita, D., Rajendran, S. & Chattree, A. 2017. Influence of artificial saliva on the corrosion behavior of dental alloys: A review. Indian Journal of Advances in Chemical Science 4(4): 478-483.

Shoushtari, M.R.T. 2010. Effect of ageing heat treatment on corrosion behavior of 17-4PH stainless steel in 3.5% NaCl. International Journal of Iron and Steel of Iran 7(1): 33-36.

Sobral, A.V.C., Ristow, W., Correa, O.V., Franco, C.V. & Costa, I. 2001. Corrosion behaviour of injection moulded 316L and 17-4PH stainless steels in a sodium chloride solution. Key Engineering Materials 189-191: 667-672.

Suri, P., Smarslok, B.P. & German, R.M. 2006. Impact properties of sintered and wrought 17-4PH stainless steel. Powder Metallurgy 49(1): 40-47.

Szewczyk-Nykiel, A. 2014 The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4PH stainless steel. Technical Transactions 13: 85-96.

Szewczyk-Nykiel, A. & Kazior, J. 2017. Effect of aging temperature on corrosion behavior of sintered 17-4 PH stainless steel in dilute sulfuric acid solution. Journal of Materials Engineering and Performance 26(7): 3450-3456.

Viswanathan, U.K., Banerjee, S. & Krishnan, R. 1988. Effects of aging on the microstructure of 17-4 PH stainless steel. Materials Science and Engineering 104: 181-189.

Wang, J.H., Wei, F.I., Chang, Y.S. & Shih, H.C. 1997. The corrosion mechanism of carbon steel in SO2 polluten atmospheres. Materials Chemistry and Physics 47(1): 1-8.

Wu, Y., Blaine, D., Schlaefer, C., Marx, B. & German, R.M. 2002. Sintering densification and microstructural evolution of injection molding grade 17-4PH stainless steel powder. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 33(7): 2185-2194.

Yoo, W.D., Lee, J.H., Youn, K.T. & Rhyim, Y.M. 2006. Study on the microstructure and mechanical properties of 17-4PH stainless steel depending on heat treatment and aging time. Solid State Phenomena 118: 15-20.

Zhang, H. 1992. Powder injection moulding (PIM) of 17-4PH stainless steel. Metal Powder Report 47(10): 59.

Zhang, M. & Chu, Q. 2012. Heat treatment of 17-4PH stainless steel. Heat Treatment of Metals 37(9): 8-11.

Ziewiec, A., Zielińska-Lipiec, A. & Tasak, E. 2014. Microstructure of welded joints of X5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment. Archives of Metallurgy and Materials 59: 965-970.

 

*Pengarang untuk surat-menyurat; email: onthida.kos@mfu.ac.th

 

   

 

sebelumnya