Sains
Malaysiana 50(5)(2021): 1297-1307
http://doi.org/10.17576/jsm-2021-5005-10
Vortex
Assisted Liquid-Liquid Microextraction with Back Extraction of Repaglinide,
Glibenclamide and Glimepiride in Water Samples
(Mikro Pengekstrakan Berbalik Cecair-Cecair Berbantu Vorteks
bagi Repaglinida, Glibenclamida dan Glimepirida dalam Sampel Air)
SOHAIB JUMAAH OWAID LUHAIBI1,
NOORFATIMAH YAHAYA2, ANAS ALSHISHANI3, MAIZATUL NAJWA
JAJULI4 & MAZIDATULAKMAM MISKAM1*
1School of Chemical Sciences, Universiti Sains Malaysia,
11800 USM, Pulau Pinang, Malaysia
2Integrative Medicine Cluster, Advanced Medical and Dental
Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Pulau Pinang,
Malaysia
3Faculty of Pharmacy, Zarqa University, 13132 Zarqa, Jordan
4Department of Chemistry, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjung Malim, Perak Darul Ridzuan, Malaysia
Diserahkan: 15 April 2020/Diterima: 1 Oktober 2020
ABSTRACT
A new analytical method based on
vortex-assisted liquid-liquid microextraction with back extraction (VALLME-BE)
coupled with high performance liquid chromatography was developed for the
simultaneous determination of antidiabetic drugs; repaglinide, glibenclamide,
and glimepiride in water samples. Chromatographic separation was achieved using
C18 column (250 × 4.6 mm × 5 µm) and methanol-phosphate buffer (pH3.7) in the
ratio of 70:30 v/v as a mobile phase at a flow rate of 1 mLmin-1.
VALLME-BE was performed using 200 μL of n-octane dispersed into the
aqueous sample (10 mL) with the aid of vortexing agitation. Then, the analytes
were back-extracted from the organic solvent to 0.05 M NaOH (40 µL). Under
these conditions, enrichment factor of 155-fold was achieved. The developed
VALLME-BE method showed excellent linearity in the range of 30 to 1000 µgL-1 with limit of detection (LOD) of 0.41-1.66 µgL-1 and limit of
quantification (LOQ) of 1.38-5.54. 41-1.66 µgL-1. VALLME-BE was
applied for the determination of repaglinide, glibenclamide and glimepiride in
water samples with the recoveries ranged from 83-109%. The relative standard
deviation for inter-day and intra-day precision was less than 9.9%.
Keywords: Glibenclamide;
glimepiride; HPLC-UV; repaglinide and vortex assisted liquid-liquid
microextraction with back extraction
ABSTRAK
Suatu kaedah analitikal yang baharu
berdasarkan pengekstrakan berbalik - mikro pengekstrakan cecair-cecair berbantu
vorteks (VALLME-BE) digandingkan dengan kromatografi cecair berprestasi tinggi
telah dibangunkan untuk penentuan serentak ubat anti-diabetik; repaglinida,
glibenklamida dan glimepirida di dalam sampel air. Pemisahan kromatografi telah
dicapai menggunakan turus C18 (250 × 4.6 mm × 5 µm) dan penimbal
methanol-fosfat (pH3.7) dengan nisbah 70:30 v/v sebagai fasa bergerak pada
kadar aliran 1 mLmin-1. VALLME-BE telah dilakukan dengan menggunakan
200 μL n-oktana yang disebarkan ke dalam sampel akues (10 mL) dengan
bantuan pengadukan. Kemudian, pengekstrakan berbalik dilakukan terhadap analit
daripada pelarut organik kepada 0.05 M NaOH (40 µL). Di bawah keadaan optimum,
faktor pengayaan sebanyak 155-lipat telah dicapai. Kaedah VALLME-BE yang
dibangunkan telah menunjukkan kelinearan yang baik dalam julat 30 hingga 1000
µgL-1 dengan had pengesanan (LOD) sebanyak 0.41-1.66 µgL-1 dan
had pengkuantitian (LOQ) sebanyak 1.38-5.54 µgL-1. VALLME-BE
digunakan untuk pengekstrakan repaglinida, glibenklamida dan glimepirida dengan
julat pengembalian semula adalah 83-109%. Sisihan piawai relatif untuk
inter-hari and intra-hari mempunyai kepersisan kurang daripada 9.9%.
Kata kunci: Glibenklamida;
glimepirida; HPLC-UV; repaglinida dan pengekstrakan berbalik - mikro pengekstrakan
cecair-cecair berbantu vortex
RUJUKAN
Abdallah, M.A., Nguyen, K., Ebele, A.J., Atia, N.N., Ali,
H.R.H. & Harrad, S. 2019. A single run, rapid polarity switching method for
determination of 30 pharmaceuticals and personal care products in waste water
using q-exactive orbitrap high resolution accurate mass spectrometry. Journal of Chromatography A 1588: 68-76.
AbuRuz, S., Millership, J. & McElnay, J. 2005. The
development and validation of liquid chromatography method for the simultaneous
determination of metformin and glipizide, gliclazide, glibenclamide or
glimperide in plasma. Journal of
Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 817(2): 277-286.
AbuRuz, S., Millership, J. & McElnay, J. 2003.
Determination of metformin in plasma using a new ion pair solid phase
extraction technique and ion pair liquid chromatography. Journal of Chromatography B 798(2): 203-209.
Al-Odaini, N.A., Zakaria, M.P., Yaziz, M.I. & Surif, S.
2010. Multi-Residue analytical method for human pharmaceuticals and synthetic
hormones in river water and sewage effluents by solid-phase extraction and
liquid chromatography - tandem mass spectrometry. Journal of Chromatography A 1217(44): 6791-6806.
Alshishani, A., Makahleh, A., Yap, H.F., Gubartallah, E.A.,
Salhimi, S.M. & Saad, B. 2016. Ion-pair vortex assisted liquid-liquid
microextraction with back extraction coupled with high performance liquid
chromatography-UV for the determination of metformin in plasma. Talanta 161: 398-404.
Bojarska, J., Fruziński, A., Sieroń, L. &
Maniukiewicz, W. 2019. The first insight into the supramolecular structures of
popular drug repaglinide: Focus on intermolecular interactions in antidiabetic
agents. Journal of Molecular Structure 1179: 411-420.
Çabuk, H. & Köktürk, M. 2013. Low density solvent-based
dispersive liquid-liquid microextraction for the determination of synthetic
antioxidants in beverages by high-performance liquid chromatography. The Scientific World Journal 2013: 1-8.
Chen, L., Xiu, R., Wang, H., Wang, L., Wu, G., Liang, J.
& Han, X. 2019. Simultaneous quantification of ten oxysterols based on
LC-MS/MS and its application in atherosclerosis human serum samples. Chromatographia 82(2): 553-564.
El-Zaher, A.A., Elkady, E.F., Elwy, H.M. & Saleh, M.A.
2016. Simultaneous determination of metformin, glipizide, repaglinide, and
glimepiride or metformin and pioglitazone by a validated LC method: Application
in the presence of metformin impurity (1-cyanoguanidine). Journal of AOAC International 99(4): 957-963.
Fachi, M.M., Cerqueira, L.B., Leonart, L.P., De Francisco,
T.M.G. & Pontarolo, R. 2016. Simultaneous quantification of antidiabetic
agents in human plasma by a UPLC-QToF-MS method. PLoS ONE 11(12): 1-17.
Feng, T., Xu, X., Du, M., Tan, M., Qin, L. & Zhu, B.
2017. Simultaneous determination of glyoxal, methylglyoxal and diacetyl in
beverages using vortex-assisted liquid-liquid microextraction coupled with
HPLC-DAD. Analytical Methods 9(16):
2445-2451.
Forouhi, N.G. & Wareham, N.J. 2014. Epidemiology of
diabetes. Medicine (Abingdon) 42(12):
698-702.
Grabic, R., Fick, J., Lindberg, R.H., Fedorova, G. &
Tysklind, M. 2012. Multi-residue method for trace level determination of
pharmaceuticals in environmental samples using liquid chromatography coupled to
triple quadrupole mass spectrometry. Talanta 100: 183-195.
Gros, M., Rodríguez-Mozaz, S. & Barceló, D. 2012. Fast
and comprehensive multi-residue analysis of a broad range of human and
veterinary pharmaceuticals and some of their metabolites in surface and treated
waters by ultra-high-performance liquid chromatography coupled to
quadrupole-linear ion trap tandem. Journal
of Chromatography A 1248: 104-121.
Gumieniczek, A. & Berecka, A. 2016. Analytical tools for
determination of new oral antidiabetic drugs, glitazones, gliptins, gliflozins
and glinides, in bulk materials, pharmaceuticals and biological samples. Open Chemistry 14(1): 215-242.
Ho, E.N.M., Yiu, K.C.H., Wan, T.S.M., Stewart, B.D. &
Watkins, K.L. 2004. Detection of anti-diabetics in equine plasma and urine by
liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical
and Life Sciences 811(1): 65-73.
Ibarra-Costilla, E., Cerda-Flores, R.M., Dávila-Rodríguez,
M.I., Samayo-Reyes, A., Calzado-Flores, C. & Cortés-Gutiérrez, E.I. 2010.
DNA damage evaluated by comet assay in mexican patients with type 2 diabetes
mellitus. Acta Diabetologica 47(1):
111-116.
Kasprzyk-Hordern, B., Dinsdale,
R.M. & Guwy, A.J. 2007. Multi-residue method for the determination of
basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase
extraction and ultra performance liquid chromatography - positive electrospray
ionisation tandem mass spectrometry. Journal
of Chromatography A 1161(1-2): 132-145.
Lian, Y., Qiu, X. & Yang, Y. 2014. Vortex-assisted
liquid-liquid microextraction combined with hplc for the simultaneous
determination of five phthalate esters in liquor samples. Food Analytical Methods 7(3): 636-644.
Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro,
G., Tavazzi, S., Ghiani, B.P.M., Lettieri, T., Blaha, L., Jarosova, B.,
Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R.H., Schwesig,
D. & Gawlik, B.M. 2013. EU-wide monitoring survey on emerging polar organic
contaminants in wastewater treatment plant effluents. Water Research 47(17): 6475-6487.
López-serna, R., Pérez, S., Ginebreda, A., Petrovi, M. &
Barceló, D. 2010. Fully automated determination of 74 pharmaceuticals in
environmental and waste waters by online solid phase extraction - liquid
chromatography-electrospray - tandem mass spectrometry. Talanta 83(2): 410-424.
Makahleh, A., Yap, H.F. & Saad, B. 2015. Vortex-assisted
liquid-liquid-liquid microextraction (VALLLME) technique: A new microextraction
approach for direct liquid chromatography and capillary electrophoresis
analysis. Talanta 143: 394-401.
Martín, J., Buchberger, W., Santos, J.L., Alonso, E. &
Aparicio, I. 2012. High-performance liquid chromatography quadrupole
time-of-flight mass spectrometry method for the analysis of antidiabetic drugs
in aqueous environmental samples. Journal
of Chromatography B: Analytical Technologies in the Biomedical and Life
Sciences 895-896: 94-101.
Mokhtar, S.U., Kulsing, C., Althakafy, J.T., Kotsos, A.,
Drummer, O.H. & Marriott, P.J. 2020. Simultaneous analysis of drugs in
forensic cases by liquid chromatography-high-resolution orbitrap mass
spectrometry. Chromatographia 83(1):
53-64.
Namieśnik, J., Spietelun, A. & Marcinkowski, L.
2015. Green sample preparation techniques for chromatographic determination of
small organic compounds. International
Journal of Chemical Engineering and Applications 6(3): 215-219.
Nannou, C.I., Kosma, C.I. & Albanis, T.A. 2015.
Occurrence of pharmaceuticals in surface waters: Analytical method development
and environmental risk assessment. International
Journal of Environmental Analytical Chemistry 95(13): 1242-1262.
Omran, N.H., Wagdy, H.A., Abdel-Halim, M. & Nashar,
R.M.E. 2019. Validation and application of molecularly imprinted polymers for
SPE/UPLC-MS/MS detection of gemifloxacin mesylate. Chromatographia 82(11): 1617-1631.
Pizarro, C., Pérez-Del-Notario, N., Sáenz-Mateo, A. &
González-Sáiz, J.M. 2014. A simple and sensitive vortex assisted liquid-liquid
microextraction method for the simultaneous determination of haloanisoles and
halophenols in wines. Talanta 128:
1-8.
Radke, M. 2010. Fate of pharmaceuticals in the environment
and in water treatment systems. Toxicological
& Environmental Chemistry 92(1): 209.
Selahle, S.K. & Nomngongo, P.N. 2020. Determination of
fluoroquinolones in the environmental samples using vortex assisted dispersive
liquid-liquid microextraction coupled with high performance liquid
chromatography. International Journal of
Environmental Analytical Chemistry 100(3): 282-294.
Siddiqui, S. 2014. Depression in type 2 diabetes mellitus -
A brief review. Diabetes and Metabolic
Syndrome: Clinical Research and Reviews 8(1): 62-65.
Yiantzi, E., Psillakis, E., Tyrovola, K. & Kalogerakis,
N. 2010. Vortex-assisted liquid-liquid microextraction of octylphenol,
nonylphenol and bisphenol-A. Talanta 80(5): 2057-2062.
*Pengarang untuk surat-menyurat;
email: mazidatul@usm.my
|