Sains
Malaysiana 50(5)(2021): 1445-1456
http://doi.org/10.17576/jsm-2021-5005-23
Comparison
of the Antioxidant Activity of Malaysian Ginger (Zingiber officinale Roscoe) Extracts with that of Selected Natural
Products and its Effect on the Viability of Myoblast Cells in Culture
(Perbandingan
Aktiviti Antioksidan Halia (Zingiber
officinale Roscoe) Malaysia dengan Produk Semula Jadi Terpilih dan Kesannya
terhadap Kebolehidupan Sel Mioblas dalam Kultur
NUR FATIN NABILAH MOHD SAHARDI1,
FAIZUL JAAFAR1, SITI NOR ASYIKIN ZAKARIA1, JEN KIT TAN1,
MARIAM FIRDHAUS MAD NORDIN2 & SUZANA MAKPOL1*
1Department of Biochemistry, Faculty of Medicine, Universiti
Kebangsaan Malaysia
HCTM, Jalan Yaacob Latif, 56000
Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of Chemical Process Engineering, Universiti
Teknologi Malaysia, Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur,
Federal Territory, Malaysia
Diserahkan: 28 Julai 2020/Diterima:
25 September 2020
ABSTRACT
Ginger has been proven to possess various therapeutic
effects, including antibacterial, anticancer, anti-inflammatory, and
antioxidant effects. However, data on the comparison of ginger antioxidant activity
with that of other natural products are still lacking. This study aimed to
analyse and compare the antioxidant properties of two types of Malaysian ginger
extracts (GE1 and GE2) with that of selected natural products. The antioxidant
activities were measured by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and ferric reducing antioxidant power (FRAP) assays, while cell
viability was determined by
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfonyl)-2H-tetrazolium
(MTS) assay. The order of the DPPH scavenging activities was as follows:
vitamin C > palm tocotrienol-rich fraction (TRF) > á-tocopherol > N-acetylcysteine
(NAC) > Ficus deltoidea > butylated hydroxytoluene (BHT) > Centella asiatica > GE2 > GE1 > Moringa oleifera > Kelulut honey; the order of the mean FRAP value was as follows: NAC > á-tocopherol > BHT > TRF > Ficus deltoidea > Moringa
oleifera > GE2 = GE1 > Centella
asiatica > Kelulut honey. The viability assays showed that
both ginger extracts significantly increased the percentage of viable cells (p
< 0.05). In conclusion, neither of the ginger extracts was cytotoxic toward
cells and both possessed comparable antioxidant properties, indicating their
potential for ameliorating oxidative stress.
Keywords: Antioxidant property;
gingerol; Malaysian ginger; myoblasts; shogaol
ABSTRAK
Halia telah terbukti mempunyai pelbagai kesan terapeutik
termasuklah kesan anti-bakteria, anti-kanser, anti-radang dan antioksidan.
Namun sehingga kini, perbandingan aktiviti antioksidan antara halia dengan
produk semula jadi yang lain masih lagi kurang. Oleh itu, tujuan kajian ini
dijalankan adalah untuk menganalisis dan membandingkan ciri-ciri antioksidan
yang ada pada dua jenis ekstrak halia (GE1 dan GE2) yang ada di Malaysia dengan
produk semula jadi yang lain. Aktiviti antioksidan telah diukur melalui asai
2,2-difenil-1-fikril-hidrazil-hidra (DPPH) dan asai aktiviti penurunan kuasa
antioksidan ion ferik (FRAP), manakala kebolehidupan sel ditentukan melalui
asai
3-(4,5-dimetiltiazol-2-yil)-5-(3-karboksimetoksifenil)-2-(4-sulfonil)-2H-tetrazolium
(MTS). Susunan untuk aktiviti hapus sisa radikal bebas DPPH adalah seperti
berikut: vitamin C > fraksi kaya tokotrienol (TRF) > á-tokoferol > NAC > Ficus deltoidea >
BHT > Centella asiatica > GE2
> GE1 > Moringa oleifera >
madu Kelulut, manakala susunan untuk aktiviti penurunan kuasa antioksidan ion
ferik (FRAP) adalah seperti berikut: NAC > á-tokoferol > BHT > TRF > Ficus deltoidea > Moringa
oleifera > GE2 = GE1 > Centella
asiatica > madu Kelulut. Asai
kebolehidupan sel menunjukkan peratus kebolehidupan sel yang dirawat dengan
kedua-dua ekstrak halia meningkat secara signifikan (p < 0.05).
Kesimpulannya, kedua-dua jenis ekstrak halia ini tidak memberi kesan toksik
terhadap sel dan mengandungi ciri-ciri antioksidan yang berpotensi mengurangkan
aras tekanan oksidatif.
Kata
kunci: Ciri antioksidan; gingerol; halia Malaysia; mioblas; shogaol
RUJUKAN
Abdul Qadir, M.,
Shahzadi, S.K., Bashir, A., Munir, A. & Shahzad, S. 2017. Evaluation of
phenolic compounds and antioxidant and antimicrobial activities of some common
herbs. International Journal of Analytical Chemistry 2017: 3475738.
Abrahim, N.N., Abdul-Rahman,
P.S. & Aminudin, N. 2018. The antioxidant activities, cytotoxic properties,
and identification of water-soluble compounds of Ficus deltoidea leaves. Journal of Life & Environmental Sciences 6: e5694.
Ahmad, N., Sulaiman, S.,
Mukti, N.A., Murad, N.A., Hamid, N.A.A. & Yusof, Y.A.M. 2006. Effects of ginger extract (Zingiber officinale Roscoe) on
antioxidant status of hepatocarcinoma induced rats. Malaysian Journal of Biochemistry and Molecular Biology 14: 7-12.
Ahmed, K., Shaheen, G.
& Asif, H. 2011. Zingiber officinale Roscoe
(pharmacological activity). Journal of
Medicinal Plants Research 5(3): 344-348.
Al-Amin, Z.M., Thomson,
M., Al-Qattan, K.K., Peltonen-Shalaby, R. & Ali, M. 2006. Anti-diabetic and
hypolipidaemic properties of ginger (Zingiber
officinale) in streptozotocin-induced diabetic rats. British
Journal of Nutrition 96(4): 660-666.
Ariffin, F., Heong Chew, S., Bhupinder, K., Karim, A.A. &
Huda, N. 2011. Antioxidant capacity and phenolic composition of fermented Centella asiatica herbal teas. Journal
of The Science of Food and Agriculture 91(15): 2731-2739.
Chakotiya, A.S., Tanwar,
A., Narula, A. & Sharma, R.K. 2017. Zingiber
officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow
cytometry. Microbial Pathogenesis 107: 254-260.
Dugasani, S., Pichika,
M.R., Nadarajah, V.D., Balijepalli, M.K., Tandra, S. & Korlakunta,
J.N. 2010. Comparative antioxidant and
anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and
[6]-shogaol. Journal of Ethnopharmacology 127(2): 515-520.
El-Ghorab, A.H., Nauman,
M., Anjum, F.M., Hussain, S. & Nadeem, M. 2010. A comparative study on chemical composition
and antioxidant activity of ginger (Zingiber
officinale) and cumin (Cuminum
cyminum). Journal of Agricultural and Food Chemistry 58(14): 8231-8237.
Ezzat, S.M., Ezzat,
M.I., Okba, M.M., Menze, E.T. & Abdel-Naim, A.B. 2018. The hidden mechanism
beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of
Ethnopharmacology 214: 113-123.
Garcia, E.J., Oldoni,
T.L.C., Alencar, S.M.D., Reis, A., Loguercio, A.D. & Grande, R.H.M. 2012.
Antioxidant activity by DPPH assay of potential solutions to be applied on
bleached teeth. Brazilian Dental Journal 23(1): 22-27.
Ghasemzadeh, A., Jaafar,
H. & Rahmat, A. 2016. Variation of the phytochemical constituents and
antioxidant activities of Zingiber
officinale Var. Rubrum Theilade
associated with different drying methods and polyphenol oxidase activity. Molecules 21(6): 780.
Guo, J., Wu, H., Du, L.,
Zhang, W. & Yang, J. 2014. Comparative antioxidant properties of some
gingerols and shogaols, and the relationship of their contents with the
antioxidant potencies of fresh and dried ginger (Zingiber officinale Roscoe). Journal
of Agricultural Science and Technology 16: 1063-1072.
Gupta, D. 2015. Methods for determination of antioxidant
capacity: A review. International Journal of Pharmaceutical Sciences and Research 6(2):
546-566.
Habib, S.H.M., Makpol,
S., Hamid, N.A.A., Das, S., Ngah, W.Z.W. & Yusof, Y.A.M. 2008. Ginger
extract (Zingiber officinale) has
anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63(6): 807-813.
Ho, L.H., Ramli, N.F.,
Tan, T.C., Muhamad, N. & Haron, M.N. 2018. Effect of extraction solvents
and drying conditions on total phenolic content and antioxidant properties of
watermelon rind powder. Sains Malaysiana 47(1): 99-107.
Hussein, U.K., Hassan,
N.E.H.Y., Elhalwagy, M.E., Zaki, A.R., Abubakr, H.O., Nagulapalli Venkata,
K.C., Jang, K.Y. & Bishayee, A. 2017. Ginger and propolis exert
neuroprotective effects against monosodium glutamate-induced neurotoxicity in
rats. Molecules 22(11): 1928.
Jolad, S.D., Lantz,
R.C., Solyom, A.M., Chen, G.J., Bates, R.B. & Timmermann, B.N. 2004. Fresh
organically grown ginger (Zingiber
officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry 65(13): 1937-1954.
Kedare, S.B. &
Singh, R.P. 2011. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 48(4): 412-422.
Kishore, R.K., Halim,
A.S., Syazana, M.N. & Sirajudeen, K.N.S. 2011. Tualang honey has higher
phenolic content and greater radical scavenging activity compared with other
honey sources. Nutrition Research 31(4): 322-325.
Kou, X., Wang, X., Ji,
R., Liu, L., Qiao, Y., Lou, Z., Ma, C., Li, S., Wang, H. & Ho, C.T. 2018.
Occurrence, biological activity and metabolism of 6-shogaol. Food and Function 9(3): 1310-1327.
Kulkarni, R.A. &
Deshpande, A.R. 2016. Anti-inflammatory and antioxidant effect of ginger in
tuberculosis. Journal of Complementary
and Integrative Medicine 13(2): 201-206.
Kulsum, S., Suresh, A.
& Mehta, A. 2018. Correlation of antioxidant and antiproliferative activity
of amla and ginger. Asian Journal of
Pharmaceutical and Clinical Research 11(8): 263-269.
Li, Y., Hong, Y., Han,
Y., Wang, Y. & Xia, L. 2016. Chemical characterization and antioxidant
activities comparison in fresh, dried, stir-frying and carbonized ginger. Journal of Chromatography B 1011:
223-232.
Liju, V.B., Jeena, K.
& Kuttan, R. 2015. Gastroprotective activity of essential oils from
turmeric and ginger. Journal of Basic and
Clinical Physiology and Pharmacology 26(1): 95-103.
Mahluji, S.,
Ostadrahimi, A., Mobasseri, M., Attari, V.E. & Payahoo, L. 2013.
Anti-inflammatory effects of Zingiber
officinale in type 2 diabetic patients. Advanced
Pharmaceutical Bulletin 3(2): 273-276.
Maizura, M., Aminah, A.
& Wan Aida, W.M. 2011. Total phenolic content and antioxidant activity of
kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal 18(2): 526-531.
Meng, S.J. & Yu,
L.J. 2010. Oxidative stress, molecular inflammation and sarcopenia. International Journal of Molecular Sciences 11(4): 1509-1526.
Misbah, H., Aziz, A.A.
& Aminudin, N. 2013. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and
fractions. BMC Complementary and
Alternative Medicine 13(1): 118.
Mozaffari-Khosravi, H.,
Naderi, Z., Dehghan, A., Nadjarzadeh, A. & Fallah Huseini, H. 2016. Effect
of ginger supplementation on proinflammatory cytokines in older patients with
osteoarthritis: Outcomes of a randomized controlled clinical trial. Journal of Nutrition in Gerontology and
Geriatrics 35(3): 209-218.
Nadeem, M., Hussain, S.,
El-Ghorab, A., Anjum, F. & Nauman, M. 2012. Antioxidant activity of ginger
(Zingiber officinale) and cumin. Journal
of Agricultural and Food Chemistry 58: 8231-8237.
Pakade, V., Cukrowska,
E. & Chimuka, L. 2013. Comparison of antioxidant activity of Moringa oleifera and selected vegetables
in South Africa. South African Journal of
Science 109(3-4): 1-5.
Park, M., Bae, J. &
Lee, D.S. 2008. Antibacterial activity of [10] ‐gingerol and [12]
‐gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research: An International
Journal Devoted to Pharmacological and Toxicological Evaluation of Natural
Product Derivatives 22(11): 1446-1449.
Pashaei-Asl, R.,
Pashaei-Asl, F., Gharabaghi, P.M., Khodadadi, K., Ebrahimi, M., Ebrahimie, E.
& Pashaiasl, M. 2017. The inhibitory effect of ginger extract on ovarian
cancer cell line; Application of systems biology. Advanced Pharmaceutical Bulletin 7(2): 241-249.
Pourreza, N. 2013. Phenolic compounds as potential antioxidant. Jundishapur Journal of Natural
Pharmaceutical Products 8(4): 149-150.
Rahman, M., Hossain, S.,
Rahaman, A., Fatima, N., Nahar, T., Uddin, B. & Basunia, M.A. 2013.
Antioxidant activity of Centella asiatica (Linn.) urban: Impact of extraction
solvent polarity. Journal of
Pharmacognosy and Phytochemistry 1(6): 27-32.
Ramalingam, M. &
Kim, S.J. 2012. Reactive oxygen/nitrogen species and their functional
correlations in neurodegenerative diseases. Journal
of Neural Transmission 119(8): 891-910.
Rigane, G., Mnif, S.
& Salem, R.B. 2018. One step purification of 6-shogaol from Zingiber officinale Rosco, a phenolic
compound having a high effectiveness against bacterial strains. Revue
Roumaine de Chimie 63(1): 5-10.
Saha, A., Blando, J.,
Silver, E., Beltran, L., Sessler, J. & DiGiovanni, J. 2014. 6-Shogaol from
dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prevention Research 7(6): 627-638.
Shimoda, H., Shan, S.J.,
Tanaka, J., Seki, A., Seo, J.W., Kasajima, N., Tamura, S., Ke, Y. &
Murakami, N. 2010. Anti-inflammatory properties of red ginger (Zingiber officinale var. Rubra) extract and suppression of nitric
oxide production by its constituents. Journal
of Medicinal Food 13(1): 156-162.
Shirin-Adel, P.R. &
Prakash, J. 2010. Chemical composition and antioxidant properties of ginger
root (Zingiber officinale). Journal of Medicinal Plants Research 4(24): 2674-2679.
Si, W., Chen, Y.P.,
Zhang, J., Chen, Z.Y. & Chung, H.Y. 2018. Antioxidant activities of ginger
extract and its constituents toward lipids. Food
Chemistry 239: 1117-1125.
Suzuki, S., Fujita, N.,
Hosogane, N., Watanabe, K., Ishii, K., Toyama, Y., Takubo, K., Horiuchi, K.,
Miyamoto, T., Nakamura, M. & Matsumoto, M. 2015. Excessive reactive oxygen
species are therapeutic targets for intervertebral disc degeneration. Arthritis Research and Therapy 17(1):
1-17.
Tan, C.M., Najib,
N.A.M., Suhaimi, N.F., Halid, N.A., Cho, V.V., Abdullah, S.I., Ismail, M.Z.,
Khor, S.C., Jaafar, F. & Makpol, S. 2021. Modulation of Ki67 and myogenic
regulatory factor expression by tocotrienol-rich fraction ameliorates myogenic
program of senescent human myoblasts. Archives
of Medical Science 17(3): 1-12.
Tanaka, K., Arita, M.,
Sakurai, H., Ono, N. & Tezuka, Y. 2015. Analysis of chemical properties of
edible and medicinal ginger by metabolomics approach. Biomed Research International 2015: 671058.
Tohma, H., Gülçin,
İ., Bursal, E., Gören, A.C., Alwasel, S.H. & Köksal, E. 2017.
Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.)
determined by HPLC-MS/MS. Journal of Food
Measurement and Characterization 11(2): 556-566.
Valera, M.C., Cardoso,
F.G.D.R., Maekawa, L.E., Camargo, C.H.R., De Oliveira, L.D. & Carvalho,
C.A.T. 2015. In vitro antimicrobial
and anti-endotoxin action of Zingiber
officinale as auxiliary chemical and medicament combined to calcium
hydroxide and chlorhexidine. Acta
Odontologica Scandinavica 73(7): 556-561.
Van Breemen, R.B., Tao,
Y. & Li, W. 2011. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 82(1): 38-43.
Wang, Y., Yu, H., Zhang,
X., Feng, Q., Guo, X., Li, S., Li, R., Chu, D. & Ma, Y. 2017. Evaluation of
daily ginger consumption for the prevention of chronic diseases in adults: A
cross-sectional study. Nutrition 36:
79-84.
Waris, G. & Ahsan,
H. 2006. Reactive oxygen species: Role in the development of cancer and various
chronic conditions. Journal of
Carcinogenesis 5: 14.
Wright, R.J., Lee, K.S.,
Hyacinth, H.I., Hibbert, J.M., Reid, M.E., Wheatley, A.O. & Asemota, H.N.
2017. An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in
Jamaica. Plants 6(48): 1-8.
Yasmin Anum, M.Y.,
Shahriza, Z.A., Looi, M.L., Shafina Hanim, M.H., Harlianshah, H., Noor Aini,
A.H., Suzana, M. & Wan Zurinah, W.N. 2008. Ginger extract (Zingiber officinale Roscoe) triggers
apoptosis in hepatocarcinogenesis induced rats. Medicinal Health 3(2008): 263-274.
*Pengarang untuk surat-menyurat;
email: suzanamakpol@ppukm.ukm.edu.my
|