Sains Malaysiana 50(7)(2021): 2035-2045
http://doi.org/10.17576/jsm-2021-5007-18
Understanding
the Behaviour of Wind Direction in Malaysia during Monsoon Seasons using
Replicated Functional Relationship in von Mises Distribution
(Pemahaman
Tingkah Laku Arah Angin di Malaysia ketika Musim Tengkujuh menggunakan Hubungan
Fungsian yang Direplikasi dalam Pengedaran von Mises)
NOR
HAFIZAH MOSLIM1, NURKHAIRANY AMYRA MOKHTAR2, YONG ZULINA
ZUBAIRI3* & ABDUL GHAPOR HUSSIN4
1Institute
of Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
2Faculty
of Computer and Mathematical Sciences, Universiti Teknologi MARA,
Cawangan Johor, Kampus Segamat,
85000 Segamat, Johor Darul Takzim, Malaysia
3Centre
for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
4Faculty
of Defence Sciences and Technology, National Defence University of Malaysia, Kem
Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 23 Jun 2020/Diterima: 19 November 2020
ABSTRACT
In studies of potential wind energy, knowing
statistical distribution of wind direction provides useful information in
making predictions and gives a better understanding of the behavior of the wind
direction. Malaysia experiences two monsoon seasons per year, namely Southwest
Monsoon and Northeast Monsoon and in this paper, our interest is to investigate
whether the direction of wind data in monsoon seasons can be modelled using
replicated LFRM with von Mises distribution. The beauty of this model is that
it considers the error terms in both x and y variables. This study considers
the bivariate relationship of directional wind data where errors are present in
both. Here, we propose a replicated functional relationship model, with the von
Mises distribution to describe the relationship of the wind direction data. In
the parameter estimation, maximum likelihood method is considered with
pseudo-replicated group of the replicated form of the functional relationship.
The novelty of this approach is that assumption on the ratio of concentration
parameters is no longer deemed necessary. Also, we derive the covariance matrix
of the parameters based on Fisher Information. From the Monte Carlo simulation
study, small bias measures were obtained, suggesting the viability of the
model. Based on the simulation study, it can be concluded that the wind
direction of the two monsoons in Malaysia can be modelled using replicated
linear functional relationship model.
Keywords: Circular
data; Monte Carlo simulation; parameter estimation; von Mises distribution;
wind direction data
ABSTRAK
Dalam kajian tentang
potensi tenaga angin, mengetahui pengedaran statistik arah angin memberikan
maklumat yang berguna dalam membuat ramalan dan memberikan pemahaman yang lebih
baik mengenai tingkah laku arah angin. Malaysia mengalami dua musim tengkujuh
setiap tahun, iaitu Monsun Barat Daya dan Monsun Timur Laut dan dalam makalah
ini, minat kami adalah untuk mengkaji apakah arah data angin pada musim
tengkujuh dapat dimodelkan menggunakan LFRM yang direplikasi dengan pengedaran
von Mises. Keindahan model ini adalah bahawa ia menganggap istilah kesalahan
dalam kedua-dua pemboleh ubah x dan y. Kajian ini mempertimbangkan hubungan
bivariat data angin arah dan terdapat kesilapan pada kedua-duanya. Di sini,
kami mencadangkan model hubungan fungsian yang direplikasi, dengan pengedaran
von Mises untuk menggambarkan hubungan data arah angin. Dalam perkiraan
parameter, kaedah kemungkinan maksimum dipertimbangkan dengan kumpulan pseudo-replikasi
bentuk replikasi hubungan fungsian. Kebaruan pendekatan ini adalah bahawa
anggapan mengenai nisbah parameter kepekatan tidak lagi dianggap perlu. Juga,
kami memperoleh matriks kovarians parameter berdasarkan Maklumat Fisher.
Daripada kajian simulasi Monte Carlo, ukuran bias kecil diperoleh, menunjukkan
keberlangsungan model. Berdasarkan kajian simulasi, dapat disimpulkan bahawa
arah angin dua monsun di Malaysia dapat dimodelkan dengan menggunakan model
hubungan fungsian linear yang direplikasi.
Kata kunci: Anggaran
parameter; data arah angin; data berkeliling; pengedaran von Mises; simulasi
Monte Carlo
RUJUKAN
Albani,
A. & Ibrahim, M.Z. 2013. Preliminary development of prototype of Savonius
wind turbine for application in low wind speed in Kuala Terengganu, Malaysia. International Journal of Scientific &
Technology Research 2(3): 102-108.
Caires, S. & Wyatt, L.R.
2003. A linear functional relationship model for circular data with an application
to the assessment of ocean wave measurement. Journal of Agricultural, Biological and Environmental Statistics 8(2):
153-169.
Çevik,
H.H., Çunkaş, M. & Polat, K. 2019. A new multistage short-term wind
power forecast model using decomposition and artificial intelligence methods. Physica
A: Statistical Mechanics and its Applications 534: 122177.
Chai,
T. & Draxler, R.R. 2014. Root mean square error (RMSE) or mean absolute
error (MAE). Geoscientific Model Development Discussions 7(1):
1525-1534.
Chalabi,
A., Lokman, H.M., Suffian, I.M., Karamali, K., Karthigeyan, V. & Masita, M.
2006. Monitoring shoreline change using Ikonos image and aerial photographs: A
case study of Kuala Terengganu area, Malaysia. In ISPRS Commission VII
Mid-Term Symposium “Remotes Sensing: from Pixels to Processes”. Enschede,
the Netherlands. pp. 8-11.
Cumming, G. 2006.
Understanding replication: confidence intervals, p-values and what’s likely to
happen next time. In International Conference on Teaching Statistics (ICOTS-7).
Eli,
A., Shaffie, M. & Zin, W.Z.W. 2012.
Preliminary study on bayesian extreme rainfall analysis: A case study of Alor
Setar, Kedah, Malaysia. Sains Malaysiana 41(11): 1403-1410.
Galea,
M. & de Castro, M. 2017. Robust inference in a
linear functional model with replications using the t distribution. Journal of Multivariate Analysis 160:
134-145.
Hassan,
S.F., Hussin, A.G. & Zubairi, Y.Z. 2009. Analysis of Malaysian wind
direction data using ORIANA. Modern
Applied Science 3(3): 115-119.
Hussin,
A.G., Fieller, N. & Stillman, E. 2005. Pseudo-replicates in the linear
circular functional relationship model. Journal
of Applied Sciences 5(1): 138-143.
Ibrahim,
A., Juahir, H., Toriman, M.E., Mustapha, A., Azid, A. & Isiyaka, H.A. 2015.
Assessment of surface water quality using multivariate statistical techniques
in the Terengganu River Basin. Malaysian
Journal of Analytical Sciences 19(2): 338-348.
Jammalamadaka,
S.R. & Sengupta, A. 2001. Topics in Circular Statistics. Singapore:
World Scientific Publishing.
Kamisan,
N.A.B., Hussin, A.G., Zubairi, Y.Z. & Hassan, S.F. 2011. Distribution of
wind direction recorded at maximum wind speed: A case study of Malaysian wind
data for 2005. International Journal of
Physical Sciences 6(7): 1840-1850.
Kamisan,
N.A.B., Hussin, A.G. & Zubairi, Y.Z. 2010. Finding the best circular
distribution for southwesterly monsoon wind direction in Malaysia. Sains
Malaysiana 39(3): 387-393.
Khatib,
T., Mohamed, A. & Sopian, K. 2012. Optimization of a PV/wind micro-grid for
rural housing electrification using a hybrid iterative/genetic algorithm: Case
study of Kuala Terengganu, Malaysia. Energy
and Buildings 47: 321-331.
Kutil,
R. 2012. Biased and unbiased estimation of the circular mean resultant length
and its variance. Statistics 46(4): 549-561.
Lee,
A. 2010. Circular data. Wiley Interdisciplinary Reviews: Computational
Statistics 2(4): 477-486.
Mardia,
K.V. & Jupp, P.E. 2000. Directional
Statistics. New York: John Wiley & Sons.
Sanusi,
N., Zaharim, A., Mata, S. & Sopian, K. 2017. A Weibull and finite mixture
of the von Mises distribution for wind analysis in Mersing, Malaysia. International Journal of Green Energy 14(12): 1057-1062.
*Pengarang
untuk surat-menyurat; email:
yzulina@um.edu.my
|