Sains Malaysiana 50(8)(2021): 2379-2393

http://doi.org/10.17576/jsm-2021-5008-20

 

Evaluating the Potential of Pyriproxyfen Dissemination using Mosquito Home System against Aedes albopictus at a Dengue Hotspot Area

(Menilai Potensi Penyebaran Pyriproxyfen menggunakan Sistem Rumah Nyamuk terhadap Aedes albopictus di Satu Kawasan 'Titik Panas' Denggi)

 

AHMAD MOHIDDIN MOHD NGESOM1, NAZNI WASI AHMAD2,  LEE HAN LIM2, ASMALIA MD LASIM3, DAVID GREENHALGH4, MAZRURA SAHANI1, ROZITA HOD5 & HIDAYATULFATHI OTHMAN1*

 

1Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

2Medical Entomology Unit, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Federal Territory, Malaysia

 

3Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Department of Mathematics and Statistics, University of Strathclyde, 16, Richmond Street, Glasgow, G11XQ, United Kingdom

 

5Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 30 Mac 2020/Diterima: 31 Disember 2020

 

ABSTRACT

Aedes mosquitoes were found to lay their eggs in the cryptic breeding sites. Eliminating cryptic and open breeding sites is essential in reducing dengue virus transmission. However, it is often challenging for health officers to assess these breeding sites which are usually missed during larval surveillance. The autodissemination approach may produce a better outcome by manipulating female mosquitoes to disperse insecticide to other Aedes spp. mosquito habitats. Thus, the present study aims to evaluate the effectiveness of the pyriproxyfen autodissemination technique using Mosquito Home System against the population of mosquitoes. This study was conducted in Bandar Baru Bangi, Selangor, Malaysia. The Mosquito Home System was deployed to control Aedes spp. populations at treatment sites using before-after-control-impact (BACI) design. The presence of pyriproxyfen distribution was confirmed using  the WHO larval bioassay which resulted in 10-35% larvae mortalities. Autodissemination of pyriproxyfen significantly reduced the population size of mosquito eggs (p<0.05), larvae (p<0.05), and ovitrap index (p<0.05) at the treatment areas compared to the control areas. Moreover, rainfall was correlated positively against ovitrap index (r = 0.247), larvae (r = 0.420), and eggs (r = 0.422). The study provides promising results for controlling Aedes spp. populations and also highlights the potentials of this technique as an alternative in vector control programmes. However, further studies on larger scale field trials are warranted.

Keywords: Aedes; autodissemination; emergence inhibition; pyriproxyfen; vector control

 

ABSTRAK

Nyamuk Aedes ditemui bertelur di kawasan pembiakan yang tersembunyi. Penghapusan bekas tersembunyi dan terbuka adalah penting bagi mengurangkan penularan virus denggi. Walau bagaimanapun, kawasan pembiakan ini sukar dikesan oleh anggota kesihatan dan lazimnya diabaikan semasa pemantauan larva. Kaedah penyebaran-auto memberikan keputusan yang baik dengan memanipulasi nyamuk betina untuk memindahkan insektisid ke habitat nyamuk Aedes. Oleh itu, kajian ini adalah untuk menilai keberkesanan kaedah penyebaran-auto pyriproxyfen menggunakan Sistem Rumah Nyamuk terhadap populasi nyamuk liar. Kajian ini dijalankan di Bandar Baru Bangi, Selangor. Sistem Rumah Nyamuk digunakan untuk mengawal populasi Aedes spp. di lokasi rawatan dengan kaedah sebelum-selepas-kawalan-impak. Kehadiran penyebaran pyriproxyfen dibuktikan dengan bioasai larva WHO telah menunjukkan 10-35% mortaliti larva. Penyebaran pyriproxyfen secara signifikan menurunkan saiz populasi telur nyamuk (p<0.05), larva (p<0.05) dan indeks ovitrap (p<0.05) di kawasan rawatan berbanding kawasan kawalan. Selain itu, taburan hujan berkorelasi secara positif terhadap indeks ovitrap (r = 0.247), larva (r = 0.420) dan telur (r = 0.422). Kajian ini memberikan keputusan yang memberangsangkan dalam mengawal populasi Aedes spp. dan menyerlahkan potensi kaedah ini sebagai alternatif dalam program kawalan vektor. Walau bagaimanapun, kajian lapangan pada skala besar adalah satu keperluan.

Kata kunci: Aedes; kawalan vektor; penyebaran-auto; perencatan tumbesaran; pyriproxyfen

 

RUJUKAN

Abad-Franch, F., Zamora-Perea, E., Ferraz, G., Padilla-Torres, S.D. & Luz, S.L.B. 2015. Mosquito-disseminated pyriproxyfen yields high breeding-sit coverage and boosts juvenile mosquito mortality at the neighbourhood scale. PLoS Negl. Trop. Dis. 9(4): e0003702.

Abu Hasan, Z., Williams, H., Ismail, N.M., Othman, H., Cozier, G.E. & Acharya, K.R. 2017. The toxicity of angiotensin-converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae. Scientific Reports 7: 45409.

Achee, N.L., Gould, F., Perkins, T.A., Reiner, R.C., Morrison, A.C., Ritchie, S.A., Gubler, D.J., Teyssou, R. & Scott, T.W. 2015. A critical assessment of vector control for dengue prevention. PLoS Neglected Tropical Diseases 9(5): e0003655.

Afify, A., Horlacher, B., Roller, J. & Galizia, C.G. 2014. Different repellents for Aedes aegypti against blood-feeding and oviposition. PLoS ONE 9(7): e103765.

Ahmad-Azri, M., Syamsa, R.A., Ahmad-Firdaus, M.S. & Aishah-Hani, A. 2019. A comparison to different types of ovitraps for outdoor monitoring of Aedes mosquitoes in Kuala Lumpur. Tropical Biomedicine 36(2): 335-347.

Amaechi, E.C., Ukpai, O.M., Ohaeri, C.C., Ejike, U.B. & Irole-Eze, O.P. 2018. Distribution and seasonal abundance of anopheline mosquitoes and their association with rainfall around irigation and non-irrigation areas in Nigeria. Cuadernos de Investigación 10(2): 267-272.

Azhar, Z.I., Jusoh, A., Syed Abdul Rahim, S.S., Hassan, M.R., Safian, N. & Shah, S.A. 2016. Temporal spatial distribution of dengue and implications on control in Hulu Langat, Selangor, Malaysia. Dengue Bull. 39: 19-31.

Betanzos-Reyes, A.F., Rodriguez, M.H., Romerp-Martinez, M., Sesma-Medrano, E., Rangel-Flores, H. & Santos-Luna, R. 2018. Association with Aedes spp. abundance and climatological effects. Salud Pública de México 60(1): 12-20.

Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W. & Moyes, C.L. 2011. The global distribution and burden dengue. Nature 496(7446): 504-507.

Bowman, L.R., Dobegan, S. & McCall, P.J. 2016. Is dengue vector control deficient in effectiveness of evidence?: Systematic review and meta-analysis. PLoS Neglected Tropical Diseases 10(3): e0004551.

Buchman, A., Gamez, S., Li, M., Antosheckin, I., Li, H.H. & Wang, H.W. 2019. Engineered resistance to zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. PNAS 116(9): 3656-3661.

Caputo, B., Lenco, A., Cianci, D., Pombi, M., Petrarca, V. & Baseggio, A. 2012. The autodissemination approach: A novel concept to fight Aedes albopictus in urban areas. PLoS Neglected Tropical Diseases 6(8): e1793.

Chadee, D.D. & Ritchie, S.A. 2010. Efficacy of sticky and standard ovitraps for Aedes aegypti in Trinidad, Wes Indies. Journal of Vector Ecology 35(2): 395-400.

Chism, B.D. & Apperson, C.S. 2003. Horizontal transfer of insect growth regulator pyriproxyfen to larval microcosm by gravid Aedes albopictus and Ochlerotatus triseriatus mosquitoes in the laboratory. Medical and Veterinary Entomology 17(2): 211-220.

Choi, Y., Tang, C.S., Mclver, L., Hashizume, M., Chan, V. & Abeyasinghe, R.R. 2016. Effects of weather factors on dengue fever incidence and implication for interventions in Cambodia. BMC Public Health 16: 241.

Contreras-Perera, Y.J., Briceno-Mendez, M., Flores-Suares, A.E., Manrique-Saide, P. & Palacio-Vargas, J.A. 2019. New record of Aedes albopictus in a suburban area of Merida, Yucatan, Mexico. Journal of the American Mosquito Control Association 35(3): 210-213.

Hidayatulfathi, O., Shamsuddin, A.F., Rajab, N.F., Nor Zafirah, A.B., Nur Hazwani, A.A. & Nur Afriza, M.F.O. 2017. Three repellent gels that contain essential oils from local Malaysian plants against dengue vector. Tropical Biomedicine 34(3): 540-549.

Hod, R., Othman, H., Jemian, N.A., Sahani, M., Udin, M.K. & Ali, Z.M. 2013. The COMBI approach in managing dengue cases in non urban residential area, Nilai, Malaysia. International Journal of Public Health Research 3(2): 347-352.

Imam, H., Zarnigar, Sofi, G. & Seikh, A. 2014. The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology 4(1): 53-55.

Invest, J.F. & Lucas, J.R. 2008. Pyriproxyfen as a mosquito larvicide. Proceedings of the 6th International Conference on Urban Pests. pp. 239-245.

Khan, G.Z., Khan, I., Khan, I.A., Alamzeb, Salman, M. & Ullah, K. 2016. Evaluation of different formulation of IGRs against Aedes albopictus and Culex quinqiefasciatus (Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine 6(6): 485-491.

Ladien, J., Souv, K., Leang, R., Huy, R., Cousien, A. & Peas, M. 2019. An algorithm applied to national surveillance data for the early detection of major dengue outbreaks in Cambodia. PLoS ONE 14(2): e0212003.

Lau, K.W., Chen, C.D., Lee, H.L., Rashid, Y.N. & Azirun, M.S. 2015. Evaluation of insect growth regulators against field-collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia. Journal of Medical Entomology 52(2): 199-206.

Liang, Y., Mohd Ngesom, A.M., Bahauddin, R., Hidayatul, F.O., Nazni, W.A. & Lee, H.L. 2019. Modelling the effect of a novel autodissemination trap on the spread of dengue in Shah Alam and Malaysia. Computational and Mathematical Methods 2019: 1923479.

Lindsay, S.W., Wilson, A., Golding, N., Scott, T.W. & Takken, W. 2017. Improving the built environment in urban areas to control Aedes aegypti borne diseases. Bulletin World Health Organization 95: 607-608.

Llyod, A.M., Farooq, M., Estep, A.S., Xue, R.D. & Kline, D.L. 2017. Evaluation of pyriproxyfen dissemination via Aedes albopictus from a point-source larvicide application in Northeast Florida. Journal of the American Mosquito Control Association 33(2): 151-155.

Lwetoijera, D., Kiware, S., Okumu, F., Devine, G.J. & Majambere, S. 2019. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malaria Journal 18: 166.

Mains, B.J., Nicholson, J., Winokur, O.C., Steiner, C., Riemersma, K.K. & Stuart, J. 2018. Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus. PLoS Neglected Tropical Diseases 12(6): e0006524.

Maula, A.W., Fuad, A. & Utarini, A. 2018. Ten-years trend of dengue research in Indonesia and South-east Asian countries: A bibliometric analysis. Global Health Action 11(1): 1504398.

Mbare, O., Lindsay, S.W. & Fillinger, U. 2014. Pyriproxyfen for mosquito control: Female sterilization or horizontal transfer to oviposition substrates by Anopheles gambiae sensu stricto and Culex quinquefasciatus. Parasites Vectors 7: 280.

Ngesom, A.M.M., Greenhalgh, D., Lasim, A.M., Sahani, M., Hod, R. & Othman, H. 2020. A review: Autodissemination of pyriproxyfen as novel strategy to control dengue outbreaks. PERTANIKA Journal Science & Technology 28(4): 1117-1140.

Norzahira, R., Hidayatulfathi, O., Wong, H.M., Cheryl, A., Firdaus, R. & Chew, H.S. 2011. Ovitrap surveillance of the dengue vectors, Aedes (Stegomyia) aegypti (L.) and Aedes (stegomyia) albopictus Skuse in selected areas in Bentong, Pahang Malaysia. Tropical Biomedicine 28(1): 48-54.

Ohba, S.Y., Ohashi, K., Pujiyati, E., Higa, Y., Kawada, H., Mito, N. & Takagi, M. 2013. The effect of pyriproxyfen as “population growth regulator” against Aedes albopictus under semi-field condition. PLoS ONE 8(7): e67045.

Ong, J., Liu, X., Rajarethinam, J., Kok, S.Y., Liang, S. & Tang, C.S. 2018. Mapping dengue risk in Singapore using random forest. PLoS Neglected Tropical Diseases 12(6): e0006587.

Othman, H., Zul-Izzat, I.K., Norhafizah, K., Nor Azimah, A.R., Muhammad Badrul, H., Mazrura, S., Rozita, H., Saiful Azlan, N. & Nor Azwani, M.N. 2019. Applying health belief model for the assessment of community knowledge, attitute and prevention practices following a dengue epidemic in a town ship in Selangor, Malaysia. International Journal of Community Medicine and Public Health 6(1): 958-970.

Othman, H., Nordin, S.A., Rashid, N.A., Abas, M.B.H., Hod, R. & Sahani, M. 2017. Dengue free community as an approach for understanding the value and challenges of inter-agencies partnerships in an intervention program. International Journal of Public Health 4(6): 1810-1826.

Pang, T., Mak, T.K. & Gubler, D.J. 2017. Prevention and control of dengue the light at the end of the tunnels. The Lancets Infectious Diseases 17: e79-e87.

Panigrahi, S.K., Barik, T.K., Mohanty, S. & Tripathi, N.K. 2014. Laboratory evaluation of oviposition behavior of field collected Aedes mosquitoes. Journal of Insects 2014: 207489.

Pleydell, D.R.J. & Bouyer, J. 2019. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Communications Biology 2(1): 1-11.

Raji, J.I., Nelo, N., Castillo, J.S., Sheyla, G., Saldana, V. & Stensmyr, M.C. 2019. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using IR8a pathway. Current Biology 29(8): 1253-1262.

Rozilawati, H., Zairi, J. & Adanan, C.R. 2007. Seasonal abundance of Aedes albopictus in selected urban and suburban areas in Penang, Malaysia. Tropical Biomedicine 24(1): 83-94.

Sahani, M., Othman, H., Mohd Nor, N.A., Hod, R., Mohd Ali, Z. & Rasidi, M.N.M. 2012.  Ecology survey on Aedes mosquito in Senawang, Negeri Sembilan. Sains Malaysiana 41(2): 261-269.

Serpa, L.L.N., Marques, G.R.A.M., Lima, A.P., Voltolini, J.C., Arduino, M.B. & Barbosa, G.L. 2013. Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of Sao Sebatiao, Sao Paulo State, Brazil. Parasites Vectors 6(1): 1-11.

Sithiprasasna, R., Mahapibul, P., Noigamal, C., Perich, M.J., Zeichner, M.C. & Burge, B. 2013. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand. Journal of Medical Entomology 40(4): 455-462.

Smith, E.P., Orvos, D.R. & Cairns, J. 1993. Impact assessment using the before-after-control-impact (BACI) model: Concern and comments. Canadian Journal of Fisheries and Aquatic Sciences 50(3): 627-637.

Srichan, P., Niyom, S.L., Pacheun, O., Iamsirithawon, S., Chatchen, S., Jones, C., White, L.J. & Pan-ngum, W. 2018. Addressing challenges faced by insecticide spraying for the control of dengue fever in Bangkok, Thailand: A qualitative approach. International Health 10(5): 349-355.

Stewart-Oaten, A. & Murdoch, W.W. 1986. Environmental impact assessment: “Pseudoreplication” in time? Ecology 67(4): 929-940.

Suman, D.S., Wang, Y., Faraji, A., William, G.M., Willinges, E. & Gaugler, R. 2018. Seasonal field efficacy of pyriproxyfen autodissemination stations against container-inhabiting mosquito Aedes albopictus under different habitat conditions. Pest Management Science 74(4): 885-895.

Suman, D.S., Farajollahi, A., Healy, S., Williams, G.M., Wang, Y. & Schoeler, G. 2014. Point-source and area-wide field studies of pyriproxyfen autodissemination against urban container-inhabiting mosquitoes. Acta Tropica 135(1): 96-103.

Suppiah, J., Ching, S.M., Amin-Nordin, S., Mat-Nor, L.A., Ahmad-Najimudin, N.A. & Low, G.K.K.K. 2018. Clinical manifestations of dengue in relation to dengue serotype and genotype in Malaysia: A retrospective observational study. PLoS Neglected Tropical Diseases 12(9): e0006817.

Suter, T.T., Flacio, E., Farina, B.F., Engeler, L., Tonolla, M. & Regis, L.N. 2016. Surveillance and control of Aedes albopictus in the Swiss-Italian border region: Differences in egg densities between intervention and non-intervention areas. PLoS Neglected Tropical Diseases 10: e0004315.

Tee, G.H., Yoep, N., Jai, A.N., Abdul Mutalip, M.H., Paiwai, F., Hashim, M.H., Pan, S., Lodz, N.A. & Aris, T. 2019. Prolonged dengue outbreak at a high-rise apartment in Petaling Jaya, Selangor, Malaysia: A case study. Tropical Biomedicine 36(2): 550-558.

Tokachil, N. & Yusuf, N. 2018. Effect of rainfall duration on Aedes aegypti populations. AIP Proceedings. p. 020081.

Tuten, H.C., Moosmann, P., Mathis, A. & Schaffner, F. 2016. Effects of pyriproxyfen on Aedes japonicus development and its autodissemination by gravid female in laboratory trials. Journal of the American Mosquito Control 32(1): 55-58.

Unlu, I., Rochlin, L., Suman, D.S., Wang, Y., Chandel, K. & Gaugler, R. 2020. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature asian tiger mosquito (Diptera: culicidae) populations. Journal of Medical Entomology 57(4): 1120-1130.

Unlu, I., Suman, D.S., Wang, Y., Klingler, K., Faraji, A. & Gaugler, R. 2017. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasites Vectors 10(1): 1-10.

Valdez, L.D., Sibona, G.J. & Condat, C.A. 2018. Impact of rainfall on Aedes aegypti populations. Ecological Modelling 385(1): 96-105.

Vector Diseases Branch (VBD). 2005. Protocol for Surveilance and Monitoring of Vector using Ovitrap. Putrajaya: Division of Disease Control, Ministry of Health.

Withanage, G.P., Hapuarachchi, H.C., Viswakula, S.D., Gunawardena, Y.I.N.S. & Hapugoda, M. 2020. Entomological surveillance with viral tracking demonstrates a migrated viral strain caused dengue epidemic in July, 2017 in Sri Lanka. PLoS ONE 15(5): e0231408.

World Health Organization (WHO). 2020. Dengue and Severe Dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Assessed on 25 March 2020.

World Health Organization (WHO). 2016. Monitoring and Managing Insecticide Resistance in Aedes Mosquito Populations: Interim Guidance for Entomologists.. https://apps.who.int/iris/handle/10665/204588. Assessed on 8 March 2016.

Yazan, L.S., Paskaran, K., Gopalsamy, B. & Majid, R.A. 2020. Aedestech Mosquito Home System prevents the hatch of Aedes mosquito eggs and reduces its population. PERTANIKA Journal of Science & Technology 28(1): 263-278.

Zapletal, J., Erraguntla, M., Adelman, Z.N., Myles, K.M. & Lawley, M.A. 2018. Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti. PLoS ONE 13: e0194025.

Zul-‘Izzat, I.Z., Hidayatulfathi, O., Norhafizah, K., Nor Azimah, A.R., Mohamad Badrul, H.A., Mazrura, S., Rozita, H. & Saiful Azlan, N. 2019. Knowledge and practices regarding Aedes control amongst residents of dengue hotspot areas in Selangor: A cross-sectional study. Sains Malaysiana 48(4): 841-849.

 

*Pengarang untuk surat-menyurat; email: hida@ukm.edu.my

 

       

 

sebelumnya