Sains
Malaysiana 50(8)(2021): 2469-2478
http://doi.org/10.17576/jsm-2021-5008-27
Situational Analysis for COVID-19:
Estimating Transmission Dynamics in Malaysia using an SIR-Type Model with
Neural Network Approach
(Analisis Keadaan untuk COVID-19: Penganggaran
Dinamik Penularan di Malaysia menggunakan Model Jenis SIR dengan Pendekatan
Rangkaian Neuron)
MOHAMMAD
SUBHI JAMILUDDIN1, MOHD HAFIZ MOHD1*, NOOR ATINAH AHMAD1 & KAMARUL IMRAN MUSA2
1School of Mathematical Sciences, Universiti
Sains Malaysia, 11800 USM Penang, Pulau Pinang, Malaysia
2School of Medical Sciences, Health Campus,
Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
Diserahkan:
30 Januari 2021/Diterima: 24 Jun 2021
Abstract
COVID-19
is a major health threat across the globe, which causes severe acute
respiratory syndrome, and it is highly contagious with significant morbidity
and mortality. In this paper, we examine the feasibility and implications of
several phases of Movement Control Order (MCO) and some non-pharmaceutical
intervention (NPI) strategies implemented by Malaysian government in the year
2020 using a mathematical model with SIR-neural network approaches. It is
observed that this model is able to mimic the trend of infection trajectories
of COVID-19 pandemic and, Malaysia had succeeded to flatten the infection curve
at the end of the Conditional MCO (CMCO) period. However, the signs of
‘flattening’ with R0 of less than one had been taken as a signal to
ease up on some restrictions enforced before. Though the government has made
compulsory the use of face masks in public places to control the spread of
COVID-19, we observe a contrasting finding from our model with regards to the
impacts of wearing mask policies in Malaysia on R0 and the infection
curve. Additionally, other events such as the Sabah State Election at the end
of third quarter of 2020 has also imposed a dramatic COVID-19 burden on the
society and the healthcare systems.
Keywords:
Basic reproduction number; neural network; non-pharmaceutical intervention; SIR
Model
ABSTRAK
COVID-19
adalah ancaman kesihatan utama di seluruh dunia dan penyakit ini boleh
menyebabkan sindrom pernafasan akut yang teruk. Ia sangat mudah berjangkit dan
telah mengakibatkan kadar kematian yang signifikan. Dalam makalah ini, kami
mengkaji kebolehlaksanaan dan implikasi beberapa fasa Perintah Kawalan
Pergerakan (PKP) dan strategi campur tangan bukan farmasi (NPI) yang dilaksanakan
oleh kerajaan Malaysia pada tahun 2020 dengan menggunakan model matematik
melalui pendekatan SIR-rangkaian neuron. Kami mendapati bahawa model ini dapat
memimik trend trajektori jangkitan pandemik COVID-19 dan Malaysia telah berjaya
melandaikan lengkung jangkitan di akhir tempoh PKP Bersyarat (PKPB). Namun,
tanda ‘landaian’ ini dengan R0 kurang daripada satu telah diambil
sebagai isyarat untuk melonggarkan beberapa sekatan yang dijalankan sebelum
ini. Walaupun kerajaan telah mewajibkan penggunaan topeng muka di tempat-tempat
awam untuk mengawal penyebaran COVID-19, kami memerhatikan hasil yang kontras
daripada model kami berkenaan dengan kesan penggunaan topeng muka di Malaysia
terhadap nilai R0 dan juga terhadap lengkung jangkitan. Selain itu,
peristiwa lain seperti Pilihan Raya Negeri Sabah pada akhir suku ketiga 2020
juga telah menyebabkan bebanan COVID-19 terhadap masyarakat dan sistem
kesihatan negara.
Kata
kunci: Asas nombor pembiakan; campur tangan bukan farmasi; Model SIR; rangkaian
neuron
RUJUKAN
Abdullah,
N.H. 2021. From the Desk of the Director-General of Health Malaysia
(Kenyataan Akhbar KPK - Situasi Semasa Jangkitan Penyakit Coronavirus 2019
(COVID-19) di Malaysia). https://kpkesihatan.com/.
Bedi,
R.S. 2020a. COVID-19 spike: 277 new cases; 270 from Bukit Jalil detention
centre. The Star.
https://www.thestar.com.my/news/nation/2020/06/04/covid-19-spike-277-new-cases-no-deaths-for-13-straight-days.
Bedi,
R.S. 2020b. Muhyiddin admits Sabah polls caused third COVID-19 wave. The
Star. https://www.thestar.com.my/news/nation/2020/11/18/muhyiddin-admits-sabah-polls-caused-third-covid-19-wave.
CNN.
2021. Tracking Coronavirus’ Global Spread. https://edition.cnn.com/interactive/2020/health/coronavirus-maps-and-cases/
Dong, E., Du, H. & Gardner, L. 2020. An
interactive web-based dashboard to track COVID-19 in real time. The Lancet
Infectious Diseases 20(5): 533-534.
Fanelli, D. & Piazza, F. 2020. Analysis and
forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons
& Fractals 134: 109761.
He, S., Peng, Y. & Sun, K. 2020. SEIR modelling of
the COVID-19 and its dynamics. Nonlinear Dynamics 101(3): 1667-1680.
Howard, J., Huang, A., Li, Z., Tufekci, Z., Zdimal,
V., van der Westhuizen, H.M., von
Delft, A., Amy Price, A., Fridman, L., Tang, L-H., Tang, V., Watson, G.L., Bax, C.E., Shaikh, R., Questier, F., Hernandez, D., Chu, L.F., Ramirez, C.M., & Rimoin, A.W. 2021. An evidence review of face masks against COVID-19. Proceedings
of the National Academy of Sciences 118(4): e2014564118.
Kermack,
W.O. & McKendrick, A.G. 1927. A contribution to the mathematical theory of
epidemics. Proceedings of the Royal Society of London Series A:
115(772): 700-721.
Ministry
of Health Malaysia. 2020a. Press Statement MOH: Updates on the COVID-19
Situation in Malaysia. 8 September 2020
http://covid-19.moh.gov.my/terkini/092020/situasi-terkini-08-september-2020/PS%20DG,%20COVID-19%20updates%20(8%20Sept%202020).pdf.
Ministry
of Health Malaysia. 2020b. Annex 2: Management of Suspected, Probable and
Confirmed COVID-19 Case. http://covid-19.moh.gov.my/garis-panduan/garis-panduan-kkm/Annex_2_Management_of_Suspected,_Probable_and_Confirmed_COVID_07102020.pdf
Ministry
of Health Malaysia. 2020c. COVID-19 Unjuran R-Naught Malaysia 17 November
2020. http://covid-19.moh.gov.my/sorotan/112020/unjuran-r-naught-hari-ini-17112020.
Mohd,
M.H. & Sulayman, F. 2020. Unravelling the myths of R0 in controlling the
dynamics of COVID-19 outbreak: A modelling perspective. Chaos, Solitons
& Fractals 138: 109943.
Musa, K.I., Arifin, W.N., Mohd, M.H., Jamiluddin, M.S., Ahmad, N.A., Chen, X.W., Hanis, T.M. & Bulgiba, A. 2021. Measuring time-varying effective reproduction numbers for COVID-19 and their relationship with Movement Control Order in Malaysia. International Journal of Environmental Research and Public Health 18(6): 3273..
Odagaki,
T. 2020. Analysis of the outbreak of COVID-19 in Japan by SIQR model. Infectious
Disease Modelling 5: 691-698.
Rampal,
L. & Liew, B.S. 2021. Malaysia's third COVID-19 wave-a paradigm shift required. The Medical Journal of Malaysia 76(1): 1-4.
Roda,
W.C., Varughese, M.B., Han, D. & Li, M.Y. 2020. Why is it difficult to
accurately predict the COVID-19 epidemic? Infectious Disease Modelling 5: 271-281.
Salman,
A.M., Ahmed, I., Mohd, M.H., Jamiluddin, M.S. & Dheyab, M.A. 2021. Scenario
analysis of COVID-19 transmission dynamics in Malaysia with the possibility of
reinfection and limited medical resources scenarios. Computers in Biology
and Medicine 133: 104372.
Sukumaran,
T. 2020. Coronavirus Malaysia: PM blames Sabah election as among causes of huge
infection surge. The South China Morning Post.
https://www.scmp.com/week-asia/health-environment/article/3104421/coronavirus-malaysia-pm-blames-sabah-election-among.
Tang,
K.H.D. 2020. Movement control as an effective measure against Covid-19 spread
in Malaysia: An overview. Journal of Public Health: From Theory to Practice. https://doi.org/10.1007/s10389-020-01316-w.
Tolles,
J. & Luong, T. 2020. Modeling epidemics with compartmental models. JAMA 323(24): 2515-2516.
van
den Driessche, P. 2017. Reproduction numbers of infectious disease models. Infectious Disease
Modelling 2(3): 288-303.
WHO
Coronavirus (2019-nCoV) Report. 2020. Novel Coronavirus (2019-nCoV)
Situation Report. World Health Organization (WHO).
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf.
Worldometers.
2020. COVID-19 Coronavirus Pandemic Cases. https://www.worldometers.info/coronavirus/.
*Pengarang
untuk surat-menyurat; email: mohdhafizmohd@usm.my
|