Sains Malaysiana 51(10)(2022):
3143-3151
http://doi.org/10.17576/jsm-2022-5110-02
The Effect of Maggot Formulated Feed on Essential Amino Acids
Composition, Digestibility and Growth of Dwarf Snakehead, Channa gachua Fry
(Kesan Makanan Diformulasi Berenga pada Komposisi Asid Amino Penting, Kebolehcernaan dan Pertumbuhan Anak Ikan Haruan Kerdil Channa gachua)
ANIK MARTINAH HARIATI1,3,*,
ATING YUNIARTI1,3, NASRULLAH BAI ARIFIN1,3, MUHAMMAD
FAKHRI1,3 & DEWA GEDE RAKA WIADNYA2,3
1Department of Aquaculture, Faculty of Fisheries and
Marine Science, Universitas Brawijaya,
Jalan Veteran 65145 Malang, East Java, Indonesia
2Laboratory of Ichthyology, Department of Fisheries,
Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 65145 Malang, East Java,
Indonesia
3Aquatic Biofloc Research
Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jalan Veteran 65145 Malang, East Java,
Indonesia
Diserahkan: 18 Februari 2022/Diterima: 10 Mei
2022
Abstract
This
study was carried out to evaluate the influences of maggot formulated feed on growth, digestibility, feed
utilization, and body composition of local snakehead Channa gachua.
Five practical diets with iso-nitrogenous (40% protein) and caloric level (3.5 kcal g-1) were determined as 10%, 20%, 30% 40%, and 50% substitution of maggot to fish meal protein.
Results demonstrated that replacement of 30% protein from maggot in the diet produced in the highest specific growth rate (4.41 %BW day-1). These results were in line with feed conversion ratio
(FCR) and protein utilization (PER) at increasing dietary maggot level from 10%
to 30%. Feed digestibility also attained the maximum level at 30% of maggot substitution. Thirty
percent protein substitution from maggot meal exhibited the highest growth performance, nutrient utilization, and digestibility than
other treatments. Dietary inclusion levels of maggot meal in diet above 30% remarkably influenced the growth, FCR, PER, and digestibility of C. gachua. Regarding
feed price concern, the application of maggot meal may potentially be profitable for snakehead’s fry culture.
Keywords:
Aquaculture; fish nutrition; haruan;
Indonesia; protein replacement
Abstrak
Penyelidikan ini dijalankan untuk menilai pengaruh makanan diformulasi berenga terhadap pertumbuhan, kecernaan, penggunaan makanan dan komposisi badan ikan haruan tempatan Channa gachua. Lima
diet praktikal dengan iso-bernitrogen (40% protein) dan tahap kalori (3.5 kcal g-1) ditentukan dengan 10%, 20%, 30% 40% dan 50% penggantian berenga kepada protein berasaskan ikan. Keputusan menunjukkan bahawa penggantian 30% protein daripada berenga dalam diet menghasilkan kadar pertumbuhan khusus tertinggi (4.41 %BW day-1).
Keputusan ini adalah selaras dengan nisbah penukaran makanan (FCR) dan penggunaan protein (PER) pada peningkatan tahap diet berenga daripada 10% kepada 30%. Kecernaan makanan juga mencapai tahap maksimum pada 30% penggantian berenga. Tiga puluh peratus penggantian protein daripada makanan berenga menunjukkan prestasi pertumbuhan tertinggi, penggunaan nutrien dan kebolehcernaan berbanding rawatan lain. Tahap rangkuman diet makanan berenga dalam diet melebihi 30% sangat mempengaruhi pertumbuhan, FCR,
PER, dan kebolehcernaan C. gachua. Berkenaan kebimbangan harga makanan, penggunaan makanan berenga mungkin berpotensi menguntungkan untuk pengkulturan anak ikan haruan.
Kata kunci: Akuakultur; haruan; Indonesia; nutrisi ikan; protein gentian
RUJUKAN
Abd El‐Hack, M.E.A., Shafi,
M.E., Alghamdi, W.Y., Abdelnour, S.A., Shehata, A.M., Noreldin, A.E., Ashour, E.A., Swelum,
A.A., Al-Sagan, A.A., Alkhateeb, M., Taha, A.E.,
Abdel-Moneim, A.-M.E., Tufarelli,
V. & Ragni, M. 2020. Black soldier fly (Hermetia illucens)
meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 10(8): 339.
Alegbeleye, W.O., Obasa, S.O., Olude, O.O., Otubu, K.
& Jimoh, W. 2012. Preliminary evaluation of the nutritive value of the
variegated grasshopper (Zonocerus variegatus L.) for African catfish Clarias
gariepinus (Burchell. 1822) fingerlings. Aquaculture Research 43(3):
412-420.
Amaya, E.A., Davis, D.A. & Rouse, D.B. 2007.
Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus
vannamei) reared under pond conditions. Aquaculture 262(2-4):
393-401.
Anvo, M.P.M., Aboua, B.R.D., Compaoré, I., Sissao, R.,
Zoungrana-Kaboré, C.Y., Kouamelan, E.P. & Toguyéni, A. 2017. Fish meal
replacement by Cirina butyrospermi caterpillar’s meal in practical diets
for Clarias gariepinus fingerlings. Aquaculture Research 48(10):
5243-5250.
Awoniyi, T.A. 2007. Health, nutrional and consumers’
acceptability assurance of maggotmeal inclusion in livestock diet - A review. International
Journal of Tropical Medicine 2(2): 52-56.
Barragan-Fonseca, K.B., Dicke, M. & van Loon,
J.J.A. 2017. Nutritional value of the black soldier fly (Hermetia illucens L.)
and its suitability as animal feed - A review. Journal of Insects as Food
and Feed 3(2): 105-120.
Barroso, F.G., de Haro, C., Sánchez-Muros, M.J.,
Venegas, E., Martínez-Sánchez, A. & Pérez-Bañón, C. 2014. The potential of
various insect species for use as food for fish. Aquaculture 422-423:
193-201.
Belghit, I., Liland, N.S., Gjesdal, P., Biancarosa,
I., Menchetti, E., Li, Y., Waagbø, R., Krogdah, Å. & Lock, E.J. 2019. Black
soldier fly larvae meal can replace fish meal in diets of sea-water phase
Atlantic salmon (Salmo salar). Aquaculture 503: 609-619.
Bicudo, Á.J.D.A. & Cyrino, J.E.P. 2009. Estimating
amino acid requirement of Brazilian freshwater fish from muscle amino acid
profile. Journal of the World Aquaculture Society 40(6): 818-823.
Bruni, L., Belghit, I., Lock, E.J., Secci, G., Taiti,
C. & Parisi, G. 2019. Total replacement of dietary fish meal with black
soldier fly (Hermetia illucens) larvae does not impair physical,
chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). Journal of the Science of Food and Agriculture 100(3): 1038-1047.
Calvert, C.C., Martin, R.D. & Morgan, N.O. 1969.
House fly pupae as food for poultry. Journal of Economic Entomology62(4): 938-939.
Cheng, Z.J., Hardy, R.W. & Usry, J.L. 2003.
Effects of lysine supplementation in plant protein-based diets on the performance
of rainbow trout (Oncorhynchus mykiss) and apparent digestibility
coefficients of nutrients. Aquaculture 215(1-4): 255-265.
Cullere, M., Tasoniero, G., Giaccone, V.,
Miotti-Scapin, R., Claeys, E., De Smet, S. & Dalle Zotte, A. 2016. Black
soldier fly as dietary protein source for broiler quails: Apparent
digestibility, excreta microbial load, feed choice, performance, carcass and
meat traits. Animal 10(12): 1923-1930.
Cummins Jr., V.C., Rawles, S.D., Thompson, K.R.,
Velasquez, A., Kobayashi, Y., Hager, J. & Webster, C.D. 2017. Evaluation of
black soldier fly (Hermetia illucens) larvae meal as partial or total
replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus
vannamei). Aquaculture 473: 337-344.
Dietz, C. & Liebert, F. 2018. Does graded
substitution of soy protein concentrate by an insect meal respond on growth and
N-utilization in Nile tilapia (Oreochromis niloticus)? Aquaculture
Reports 12: 43-48.
Elemo, B.O., Elemo, G.N., Makinde, M.A. &
Erukainure, O.L. 2011. Chemical evaluation of African palm weevil, Rhychophorus
phoenicis, larvae as a food source. Journal of Insect Science 11(146): 1-6.
Fang, H., Xie, J., Liao, S., Guo, T., Xie, S., Liu,
Y., Tian, L. & Niu, J. 2019. Effects of dietary inclusion of shrimp paste
on growth performance, digestive enzymes activities, antioxidant and
immunological status and intestinal morphology of hybrid snakehead (Channa
maculata ♀ × Channa argus ♂). Frontiers in Physiology 10(1027): 1-8.
Fasakin, E.A., Balogun, A.M. & Ajayi, O.O. 2003.
Evaluation of full-fat and defatted maggot meals in the feeding of clariid
catfish Clarias gariepinus fingerlings. Aquaculture Research 34:
733-738.
Henry, M., Gasco, L., Piccolo, G. & Fountoulaki,
E. 2015. Review on the use of insects in the diet of farmed fish: Past and
future. Animal Feed Science and Technology 203: 1-22.
Hien, T.T.T., Duyen, N.T.C., Tu, T.L.C., Khanh, N.V.
& Phu, T.M. 2018. Dietary methionine and lysine requirement of snakehead (Channa
striata) fingerlings. International Journal of Scientific and Research
Publications 8(8): 795-805.
Khaeriyah, A., Haryati & Karim, Y. 2018.
Optimization of feeding with organic chromium supplement in different
concentrations on the ammonia excretion and the growth of snakehead fish seeds
(Channa striata). Scientific Research Journal 6(4): 11-18.
Kim, W., Bae, S., Kim, A., Park, K., Lee, S., Choi,
Y., Han, S., Park, Y. & Koh, Y. 2011. Characterization of the molecular
features and expression patterns of two serine proteases in Hermetia
illucens (Diptera: Stratiomyidae) larvae. BMB Reports 44(6):
387-392.
Kramer, K.J., Hopkins, T.L. & Schaefer, J. 1995.
Applications of solids NMR to the analysis of insect sclerotized structures. Insect
Biochemistry and Molecular Biology 25(10): 1067-1080.
Kroeckel, S., Harjes, A.G.E., Roth, I., Katz, H.,
Wuertz, S., Susenbeth, A. & Schulz, C. 2012. When a turbot catches a fly:
Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens)
as fish meal substitute - Growth performance and chitin degradation in juvenile
turbot (Psetta maxima). Aquaculture 364-365: 345-352.
Li, L., Zhao, Z. & Liu, H. 2013. Feasibility of
feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life
support systems as a source of animal protein for humans. Acta Astronautica 92(1): 103-109.
Liao, Y.J., Ren, M.C., Liu, B., Sun, S.M., Cui, H.H.,
Xie, J., Zhou, Q.L., Pan, L.K., Chen, R.L. & Ge, X.P. 2014. Dietary
methionine requirement of juvenile blunt snout bream (Megalobrama
amblycephala) at a constant dietary cystine level. Aquaculture Nutrition 20(6): 741-752.
Lock, E.R., Arsiwalla, T. & Waagbø, R. 2016.
Insect larvae meal as an alternative source of nutrients in the diet of
Atlantic salmon (Salmo salar) postmolt. Aquaculture Nutrition 22(6): 1202-1213.
Magalhães, R., Sánchez-López, A., Leal, R.S.,
Martínez-Llorens, S., Oliva-Teles, A. & Peres, H. 2017. Black soldier fly (Hermetia
illucens) pre-pupae meal as a fish meal replacement in diets for European
seabass (Dicentrarchus labrax). Aquaculture 476: 79-85.
Makkar, H.P.S., Tran, G., Heuzé, V. & Ankers, P.
2014. State-of-the-art on use of insects as animal feed. Animal Feed Science
and Technology 197: 1-33.
Mithu, M., Rabbane, G., Khaleque, A. & Mustafa, G.
2017. Effect of formulated diets on growth performance and feed utilization
efficiencies of snakehead Channa striatus juveniles. International
Journal of Fisheries and Aquatic Studies 5(3): 451-455.
Mustapha, A.K. & Kolawole, A.A. 2019. Potentials
of fresh housefly maggot in the diet of Oreochromis niloticus fingerlings. Journal of Applied Sciences and Environmental Management 23(4): 681.
Myers, H.M., Tomberlin, J.K., Lambert, B.D. &
Kattes, D. 2008. Development of black soldier fly (Diptera: Stratiomyidae)
larvae fed dairy manure. Environmental Entomology 37(1): 11-15.
Nguyen, T.N., Davis, D.A. & Saoud, I.P. 2009.
Evaluation of alternative protein sources to replace fish meal in practical
diets for juvenile tilapia, Oreochromis spp. Journal of the World
Aquaculture Society 40(1): 113-121.
Ogunji, J., Toor, R-U-A.S., Schulz, C. & Kloas,
W. 2008. Growth performance, nutrient utilization of nile tilapia Oreochromis
niloticus fed housefly maggot meal (magmeal) diets. Turkish Journal of Fisheries and Aquatic Sciences 8: 141-147.
Olaniyi, C.O. & Salau, B.R. 2013. Utilization of maggot meal in the nutrition of African
catfish. African Journal of Agricultural Research 8(37):
4604-4607.
Oonincx, D.G.A.B., Van Broekhoven, S., Van Huis, A.
& Van Loon, J.J.A. 2015. Feed conversion, survival and development, and
composition of four insect species on diets composed of food by-products. PLoS
ONE 10(12): 1-20.
Paray, B.A., Haniffa, M.A., Innocent, X. & Rather,
I.A. 2016. Effect of feed quality on growth and survival of striped snakehead, Channa striatus (bloch, 1793)
hatchlings. Indian Journal of Geo-Marine Sciences 45(1): 105-110.
Rust, M.B. 2002. Nutritional physiology. In Fish
Nutrition, edited by Halver, J.E. & Hardy, R.W. New York: The Academic
Press. pp. 368-446.
Sagada, G., Chen, J., Shen, B., Huang, A., Sun, L.,
Jiang, J. & Jin, C. 2017. Optimizing protein and lipid levels in practical
diet for juvenile northern snakehead fish (Channa argus). Animal
Nutrition 3(2): 156-163.
Sánchez-Muros, M.J., de Haro, C., Sanz, A., Trenzado,
C.E., Villareces, S. & Barroso, F.G. 2016. Nutritional evaluation of Tenebrio
molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus)
diet. Aquaculture Nutrition 22(5): 943-955.
Sheppard, D.C., Larry, G., Thompson, S.A. &
Savage, S. 1994. A value added manure management system using the balck soldier
fly. Bioresource Technology 50: 275-279.
Tanaka, Y., Tanioka, S.I., Tanaka, M., Tanigawa, T.,
Kitamura, Y., Minami, S., Okamoto, Y., Miyashita, M. & Nanno, M. 1997.
Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral
administration. Biomaterials 18(8): 591-595.
van Huis, A. & Oonincx, D.G.A.B. 2017. The
environmental sustainability of insects as food and feed: A review. Agronomy
for Sustainable Development 37: 43.
Wijianti, H., Suprayudi, M.A., Utomo, N.B.P. &
Jusadi, D. 2018. Interaction of dietary protein and energy-protein ratio on
growth performance of snakehead Channa striata. Jurnal Akuakultur
Indonesia 18(1): 70-79.
Xiao, X., Jin, P., Zheng, L., Cai, M., Yu, Z., Yu, J.
& Zhang, J. 2018. Effects of black soldier fly (Hermetia illucens)
larvae meal protein as a fishmeal replacement on the growth and immune index of
yellow catfish (Pelteobagrus fulvidraco). Aquaculture Research 49(4): 1569-1577.
*Pengarang
untuk surat-menyurat; email: a_hariati@ub.ac.id
|