Sains Malaysiana 51(10)(2022):
3163-3170
http://doi.org/10.17576/jsm-2022-5110-04
Expression of Furfural Reductase
Improved Furfural Tolerance in Antarctic Bacterium Pseudomonas extremaustralis
(Pengekspresan Furfural Reduktase Meningkatkan Ketoleranan Furfural dalam Bakteria AntartikaPseudomonas extremaustralis)
AHMAD BAZLI RAMZI1,*, MATTHLESSA MATTHEW MINGGU1, UMMUL SYAFIQAH RUSLAN1,
MOHAMAD HAZWAN FIKRI KHAIRI1&
PEER MOHAMED ABDUL2,3
1Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Research Centre for Sustainable Process Technology,
Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Program of Chemical Engineering, Faculty of
Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan:
14 Disember 2021/Diterima:
15 Jun 2022
Abstract
Whole-cell biocatalysis using Antarctic bacteria is presently hampered
by a lack of genetic information, limited gene tools and critically, a poor
range of cultivation conditions. In this work, biological engineering strategy
was employed for developing Pseudomonas extremaustralis,
a metabolically-versatile and biopolymer-producing Antarctic bacterium, as a
new whole-cell biocatalytic host. For this purpose, gene cloning and plasmid
construction were carried out for overexpression of furfural reductase (FucO), an industrially-important enzyme for degradation of
toxic furfural compound commonly found in lignocellulosic biorefinery. FucO gene from Escherichia coli BL21
was cloned in pJM105 plasmid and transformed into competent cells of P. extremaustralis to generate a biologically-engineered pFucO strain. For functional characterization of the
enzyme, furfural reductase activity was assayed, where the P. extremaustralis pFucO strain exhibited increased furfural reductase activity of about 15.6 U/mg, an
18.8-fold higher than empty plasmid-carrying control pJM105 strain (0.83 U/mg).
Furfural detoxification activity using whole cells was also determined by which
the overexpression of FucO led to increased tolerance
and cell growth with an OD600 value of 5.3 as compared to the control pJM105
strain that was inhibited with 10 mM furfural during 48-hour cultivation.
Therefore, the findings obtained in this study successfully demonstrated the
development of P. extremaustralis as
biocatalytic host for the production of recombinant furfural reductase. The
bioengineering would serve as a modular biotechnological platform for polar
strain and bioproduct development tailored towards industrial biotechnology
applications.
Keywords: Antarctic
bacteria; biological engineering; furfural reductase; Pseudomonas extremaustralis; whole-cell biocatalysis
Abstrak
Penggunaan bakteria
Antartika sebagai biopemangkin keseluruhan sel buat masa ini adalah sangat
terbatas akibat kurangnya maklumat genetik, alatan genetik yang terhad dan
ketidakserasian keadaan pengkulturan. Dalam kajian ini, strategi kejuruteraan
biologi digunakan untuk membangunkan Pseudomonas extremaustralis,
sejenis bakteria yang berasal dari Antartika yang mempunyai metabolisme
versatil, berupaya menghasilkan biopolimer dan sesuai digunakan sebagai perumah
baru biopemangkin keseluruhan sel. Untuk mencapai tujuan ini, pengklonan gen
dan pembinaan plasmid telah dilakukan bagi penghasilan furfural reduktase
(FucO), sejenis enzim yang penting dalam penguraian sebatian toksik furfural
yang kerap ditemui dalam proses penapisan sisa lignoselulosa. Gen FucO daripada Escherichia coli BL21 diklonkan ke dalam plasmid pJM105 dan
dimasukkan ke dalam sel kompeten P. extremaustralis untuk menghasilkan
strain terjurutera biologi pFucO. Untuk pencirian enzim dan kefungsian bakteria
terubah suai biologi ini, aktiviti furfural reduktase telah diasai dengan
strain P. extremaustralis pFucO menghasilkan sebanyak 15.6 U/mg, iaitu
18.8 kali ganda lebih banyak daripada sel yang mengandungi plasmid kawalan
pJM105 (0.83 U/mg). Aktiviti penguraian furfural menggunakan seluruh sel juga dilakukan
yang mana pengaruhan enzim furfural reduktase berjaya meningkatkan pertumbuhan
sel oleh strain pFucO yang menunjukkan OD600 sebanyak 5.3 selepas 48 jam
dikultur berbanding strain kawalan pJM105 yang direncatkan apabila diuji dengan
10 mM furfural. Penemuan kajian ini membuktikan P. extremaustralis terjurutera biologi ini berjaya dibangunkan sebagai perumah biopemangkin untuk
penghasilan furfural reduktase rekombinan. Strategi kejuruteraan biologi ini
akan menjadi pelantar berasaskan bioteknologi untuk pembangunan strain dan
penghasilan bioproduk kutub untuk aplikasi bioteknologi industri.
Kata kunci: Bakteria Antartika; biopemangkin seluruh sel; furfural reduktase; kejuruteraan biologi; Pseudomonas extremaustralis
RUJUKAN
Abdul, P.M., Md. Jahim,
J., Harun, S., Markom, M., Hassan, O., Mohamad, A.W. & Asis, A.J. 2013.
Biohydrogen production from pentose-rich oil palm empty fruit bunch molasses: A
first trial. International Journal of Hydrogen Energy 38(35):
15693-15699.
Ali, M.S.M., Ganasen, M., Rahman,
R.N.Z.R.A., Chor, A.L.T., Salleh, A.B. & Basri, M. 2013. Cold-adapted RTX
lipase from Antarctic Pseudomonas sp. strain AMS8: Isolation, molecular
modeling and heterologous expression. The Protein Journal 32(4): 317-325.
Dietrich, D., Illman, B. &
Crooks, C. 2013. Differential sensitivity of polyhydroxyalkanoate producing
bacteria to fermentation inhibitors and comparison of polyhydroxybutyrate
production from Burkholderia cepacia and Pseudomonas pseudoflava. BMC Research Notes 6: 219.
Fendrihan, S. & Negoiţa,
T.G. 2017. Psychrophilic microorganisms as important source for
biotechnological processes. Adaptation of Microbial Life to Environmental
Extremes: Novel Research Results and Application. 2nd ed., edited by
Stan-Lotter, H. & Fendrihan, S. Springer.
Franden, M.A., Pienkos, P.T. &
Zhang, M. 2009. Development of a high-throughput method to evaluate the impact
of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas
mobilis. Journal of Biotechnology 144(4): 259-267.
Guarnieri, M.T., Ann Franden, M.,
Johnson, C.W. & Beckham, G.T. 2017. Conversion and assimilation of furfural
and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440. Metabolic
Engineering Communications 8(4): 22-28.
Hashim, N.H.F., Bharudin, I., Nguong,
D.L.S., Higa, S., Bakar, F.D.A., Nathan, S., Rabu, A., Kawahara, H., Illias,
R.M., Najimudin, N., Mahadi, N.M. & Murad, A.M.A. 2013. Characterization of
Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma
antarctica PI12. Extremophiles 17(1): 63-73.
Heer, D. & Sauer, U. 2008.
Identification of furfural as a key toxin in lignocellulosic hydrolysates and
evolution of a tolerant yeast strain. Microbial Biotechnology 1(6):
497-506.
Jiang, W., Wang, S., Wang, Y. &
Fang, B. 2016. Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnology
for Biofuels 9: 57.
Markley, A.L., Begemann, M.B.,
Clarke, R.E., Gordon, G.C. & Pfleger, B.F. 2015. Synthetic biology toolbox
for controlling gene expression in the cyanobacterium Synechococcus sp.
strain PCC 7002. ACS Synthetic Biology 4: 595-603.
Martínez-Rosales, C., Fullana, N.,
Musto, H. & Castro-Sowinski, S. 2012. Antarctic DNA moving forward: Genomic
plasticity and biotechnological potential. FEMS Microbiology Letter 331(1):
1-9.
Marx, C.J. & Lidstrom, M.E. 2001.
Development of improved versatile broad-host-range vectors for use in
methylotrophs and other Gram-negative bacteria. Microbiology 147:
2065-2075.
Piette, F., D’Amico, S.,
Mazzucchelli, G., Danchin, A., LePrince, P. & Feller, G. 2011. Life in the
cold: A proteomic study of cold-repressed proteins in the antarctic bacterium Pseudoalteromonas
haloplanktis TAC125. Applied and Environmental Microbiology 77(11):
3881-3883.
Raiger Iustman, L.J., Tribelli, P.M.,
Ibarra, J.G., Catone, M.V., Venero, E.S.C. & Lopez, N.I. 2015. Genome
sequence analysis of Pseudomonas extremaustralis provides new insights
into environmental adaptability and extreme conditions resistance. Extremophiles 19(1): 207-220.
Raj, K., Partow, S., Correia, K.,
Khusnutdinova, A.N., Yakunin, A.F. & Mahadevan, R. 2018. Biocatalytic
production of adipic acid from glucose using engineered Saccharomyces
cerevisiae. Metabolic Engineering Communications 6: 28-32.
Ramzi, A.B., Ku Bahaudin, K.N.A.,
Baharum, S.N., Che Me, M.L., Goh, H.H., Hassan, M. & Mohd Noor, N. 2018.
Rapid assembly of yeast expression cassettes for phenylpropanoid biosynthesis
in Saccharomyces cerevisiae. Sains Malaysiana 47(12): 2969-2974.
Ramzi, A.B., Hyeon, J.E., Kim, S.W.,
Park, C. & Han, O.S. 2015. 5-aminolevulinic acid production in engineered Corynebacterium
glutamicum via C5 biosynthesis pathway. Enzyme and Microbial Technology 81: 1-7.
Sarmiento, F., Peralta, R. &
Blamey, J.M. 2015. Cold and hot extremozymes: Industrial relevance and current
trends. Frontiers in Bioengineering and Biotechnology 3: 148.
Tomás, A.F., Karagöz, P., Karakashev,
D. & Angelidaki, I. 2013. Extreme thermophilic ethanol production from
rapeseed straw: Using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnology
and Bioengineering 110(6): 1574-1582.
Tribelli, P.M., Lujan, A.M., Pardo,
A., Ibarra, J.G., Do Porto, D.F., Smania, A. & Lopez, N.I. 2019. Core
regulon of the global anaerobic regulator Anr targets central metabolism
functions in Pseudomonas species. Scientific Reports 9: 9065.
Tribelli, P.M., Rossi, L., Ricardi,
M.M., Gomez-Lozano, M., Molin, S., Raiger lustman, L.J. & Lopez, N.I. 2018.
Microaerophilic alkane degradation in Pseudomonas extremaustralis: A
transcriptomic and physiological approach. Journal of Industrial and
Microbiology and Biotechnology 45(1): 15-23.
Tribelli, P.M., Venero, E.C.S.,
Ricardi, M.M., Gomez-Lozano, M., Raiger lustman, L.J., Molin, S. & Lopez,
N.I. 2015. Novel essential role of ethanol oxidation genes at low temperature
revealed by transcriptome analysis in the antarctic bacterium Pseudomonas
extremaustralis. PLoS ONE 10(12): e0145353.
Tribelli, P.M., Di Martino, C.,
López, N.I. & Raiger Iustman, L.J. 2012. Biofilm lifestyle enhances diesel
bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate
producer Pseudomonas extremaustralis. Biodegradation 23: 645-651.
Wang, Q., Mueller, A.P., Leong, C.R.,
Matsumoto, K., Taguchi, S. & Nomura, C.T. 2010. Quick and efficient method
for genetic transformation of biopolymer-producing bacteria. Journal of
Chemical Technology and Biotechnology 85(6): 775-778.
Wang, X., Yomano, L.P., Lee, J.Y.,
York, S.W., Zheng, H., Mullinnix, Shanmugam, K.T. & Ingram, L.O. 2013.
Engineering furfural tolerance in Escherichia coli improves the
fermentation of lignocellulosic sugars into renewable chemicals. Proceedings
of the National Academy of Sciences of the United States of America 110(10):
4021-4026.
Wang, X., Miller, E.N., Yomano, L.P.,
Zhang, X., Shanmugam, K.T. & Ingram, L.O. 2011. Increased furfural
tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia
coli strains engineered for the production of ethanol and lactate. Applied
and Environmental Microbiology 77: 5132-5140.
*Pengarang untuk surat-menyurat;
email: bazliramzi@ukm.edu.my
|