Sains Malaysiana 51(10)(2022): 3215-3236

http://doi.org/10.17576/jsm-2022-5110-09

 

Substituted 3-styryl-2-pyrazoline Derivatives as an Antimalaria: Synthesis, in vitro Assay, Molecular Docking, Druglikeness Analysis, and ADMET Prediction

(Penggantian Terbitan 3-styryl-2-pyrazoline sebagai Antimalaria: Sintesis, Asai in vitro, Dok Molekul, Analisis Keserupaan Dadah dan Ramalan ADMET)

 

LINDA EKAWATI1, BETA ACHROMI NUROHMAH1, JUFRIZAL SYAHRI2 & BAMBANG PURWONO1,*

 

1Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Jalan Kaliurang Sekip Utara Bulaksumur 21, Yogyakarta, 55281 Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Muhammadiyah Riau, Jalan Tuanku Tambusai Ujung Nomor 1, Pekanbaru Indonesia

 

Diserahkan: 23 Oktober 2021/Diterima: 12 Mei 2022

 

Abstract

The synthesis, in vitro antimalarial assay, molecular docking, drug-likeness analysis, and ADMET prediction of substituted 3-styryl-2-pyrazoline derivatives as antimalaria have been conducted. The synthesis of N-phenyl (1a3a) and N-acetyl-substituted (1b3b) 3-styryl-2-pyrazolines was carried out using dibenzalacetone derivatives and hydrazine hydrate or phenylhydrazine. An in vitro antimalarial assay was conducted against the chloroquine-sensitive Plasmodium falciparum 3D7 strain, while molecular docking was performed toward the crystal protein of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) (PDB ID: 1J3I). Furthermore, the prediction of drug-like properties was determined by assessing Lipinski’s rules, and the pharmacokinetic parameters were also studied in-silico, including absorption, distribution, metabolism, excretion, and toxicity (ADMET). The in vitro assay showed that 3a (IC50 0.101 µM) has excellent antimalarial activity, followed by 2a (0.177 µM), and 1b (0.258 µM). Molecular docking has supported the in vitro assay by showing the lowest CDOCKER energy for 3a (‒56.316 kcal/mol), then 2a (‒51.2603 kcal/mol), and 1b (‒48.8774 kcal/mol). The drug-like properties showed that all of the prepared compounds were acceptable based on Lipinski’s rules and predicted to be potentially orally bioavailable. The ADMET analysis provided information that 3a and 2a could be proposed as the best lead antimalarial drugs with further modification to reduce the lipophilicity and toxicity properties.

 

Keywords: ADMET; antimalarial; dibenzalacetone; molecular docking; pyrazoline

 

Abstrak

Sintesis, asai antimalaria in vitro, dok molekul, analisis keserupaan dadah dan ramalan ADMET bagi terbitan 3-styryl-2-pyrazoline yang digantikan sebagai antimalaria telah dijalankan. Sintesis N-fenil (1a‒3a) dan N-acetyl-substituted (1b‒3b) 3-styryl-2-pyrazolines telah dijalankan menggunakan terbitan dibenzalaseton dan hidrazina hidrat atau fenilhidrazina. Ujian antimalaria in vitro telah dijalankan terhadap strain Plasmodium falciparum 3D7 yang sensitif terhadap klorokuin, manakala dok molekul dilakukan ke arah protein kristal Plasmodium falciparum dihidrofolat reduktase-timidilat sintase (PfDHFR-TS) (PDB ID: 1J3I). Tambahan pula, ramalan sifat seperti ubat ditentukan dengan menilai peraturan Lipinski dan parameter farmakokinetik juga dikaji secara in siliko, termasuk penyerapan, pengedaran, metabolisme, perkumuhan dan ketoksikan (ADMET). Ujian in vitro menunjukkan bahawa 3a (IC50 0.101 µM) mempunyai aktiviti antimalaria yang sangat baik, diikuti oleh 2a (0.177 µM), dan 1b (0.258 µM). Dok molekul telah menyokong ujian in vitro dengan menunjukkan tenaga CDOCKER terendah untuk 3a (‒56.316 kcal/mol), kemudian 2a (‒51.2603 kcal/mol) dan 1b (‒48.8774 kcal/mol). Sifat keserupaan dadah menunjukkan bahawa semua sebatian yang disediakan boleh diterima berdasarkan peraturan Lipinski dan diramalkan berpotensi bio tersedia secara oral. Analisis ADMET memberikan maklumat bahawa 3a dan 2a boleh dicadangkan sebagai ubat antimalaria terbaik dengan pengubahsuaian selanjutnya untuk mengurangkan sifat lipofilis dan ketoksikan.

 

Kata kunci: ADMET; antimalaria; dibenzalaseton; dok molekul; pirazolin

 

RUJUKAN

Adebayo, J.O., Tijjani, H., Adegunloye, A.P., Ishola, A.A., Balogun, E.A. & Malomo, S.O. 2020. Enhancing the antimalarial activity of artesunate. Parasitology Research 119(9): 2749-2764.

Aher, R.B., Wanare, G., Kawathekar, N., Kumar, R.R., Kaushik, N.K., Sahal, D. & Chauhan, V.S. 2011. Dibenzylideneacetone analogues as novel Plasmodium falciparum inhibitors. Bioorganic and Medicinal Chemistry Letters 21(10): 3034-2036.

Batista, R., Silva, A.J. Jr. & de Oliveira, A.B. 2009. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14(8): 3037-3072.

Belete, T.M. 2020. Recent progress in the development of new antimalarial drugs with novel targets. Drug Design, Development and Therapy 14: 3875-3889.

Charris, J.E., Monasterios, M.C., Acosta, M.E., Rodríguez, M.A., Gamboa, N.D., Martínez, G.P., Rojas, H.R., Mijares, M.R. & De Sanctis, J.B. 2019. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Medicinal Chemistry Research 28: 2050-2066. 

Chugh, A., Kumar, A., Verma, A., Kumar, S. & Kumar, P. 2020. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Medicinal Chemistry Research 29: 1723-1750.

Daina, A., Michielin, O. & Zoete, V. 2017. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Report 7: 42717.

de Souza, J.E., do Nascimento, M.F.A., Borsodi, M.P.G., de Almeida, A.P., Rossi-Bergmann, B., de Oliveira, A.B. & Costa, S.S. 2018. Leaves from the tree Poincianella pluviosa as a renewable source of antiplasmodial compounds against chloroquine-resistant Plasmodium falciparumJournal of the Brazilian Chemical Society 29(6): 1318-1327. 

Dong, J., Wang, N.N., Yao, Z.J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.P. & Cao, D.S. 2018. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics 10(1): 29.

Ekawati, L., Purwono, B. & Mardjan, M.I.D. 2020. Synthesis N-phenyl pyrazoline from dibenzalacetone and heme polymerization inhibitory activity (HPIA) assay. Key Engineering Materials 840: 245-250.

Ertl, P., Rohde, B. & Selzer, P. 2000. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry 43(20): 3714-3717.

Hadni, H. & Elhallaoui, M. 2019. Molecular docking and QSAR studies for modeling the antimalarial activity of hybrids 4-anilinoquinoline-triazines derivatives with the wild-type and mutant receptor pf-DHFR. Heliyon 5(8): e02357.

Han, Y., Zhang, J., Hu, C.Q., Zhang, X., Ma, B. & Zhang, P. 2019. In silico ADME and toxicity prediction of ceftazidime and its impurities. Frontiers in Pharmacology 10: 434.

Hakkola, J., Hukkanen, J., Turpeinen, M. & Pelkonen, O. 2020. Inhibition and induction of CYP enzymes in humans: An update. Archives of Toxicology 94: 3671-3722.

Ibrahim, Z.Y., Uzairu, A., Shallangwa, G. & Abechi, S. 2020. Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Scientific African 10: e00570.

Kalaria, P.N., Karad, S.C. & Raval, D.K. 2018. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. European Journal of Medicinal Chemistry 158: 917-936.

Kumar, P., Choonara, Y.E. & Pillay, V. 2014. In silico affinity profiling of neuroactive polyphenols for post-traumatic calpain inactivation: A molecular docking and atomistic simulation sensitivity analysis. Molecules 20(1): 135-168.

Leroy, D. 2017. How to tackle antimalarial resistance? EMBO Molecular Medicine 9(2): 133-134.

Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review 46(1-3): 3-26.

Manohar, S., Khan, A.I., Kandi, A.K., Raj, K., Sun, G., Yang, X., Molina, A.D.C., Wang, B. & Rawat, D.S. 2013. Synthesis, antimalarial activity and cytotoxic potential of new monocarbonyl analogues of curcumin. Bioorganic and Medicinal Chemistry Letters 23(1): 112-116.

Nauduri, D. & Reddy, G.B.S. 1998 Antibacterial and antimycotics Part 1: Synthesis and activity of 2-Pyrazolines derivatives. Chemical and Pharmaceutical Bulletin 46(8): 1254-1260.

Nigam, M., Atanassova, M., Mishra, A.P., Pezzani, R., Devkota, H.P., Plygun, S., Salehi, B., Setzer, W.N. & Sharifi-Rad, J. 2019. Bioactive compounds and health benefits of Artemisia species. Natural Product Communications 14(7): 1-17.

Pajouhesh, H. & Lenz, G.R. 2005. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2(4): 541-553.

Pandey, A.K., Sharma, S., Pandey, M., Alam, M.M., Shaquiquzzaman, M. & Akhter, M. 2016. 4,5-Dihydrooxazole-pyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. European Journal of Medicinal Chemistry 123: 476-486.

Purwono, B., Nurohmah, B.A., Fathurrohman, P.Z. & Syahri, J. 2021. Some 2-arylbenzimidazole derivatives as an antimalarial agent: Synthesis, activity assay, molecular docking and pharmacological evaluation. Rasayan Journal of Chemistry 14(1): 94-100.

Septiana, I., Purwono, B., Anwar, C., Nurohmah, B.A. & Syahri, J. 2022. Synthesis and docking study of 2–Aryl-4,5-diphenyl-1H-imidazole derivatives as lead compounds for antimalarial agent. Indonesian Journal of Chemistry 22(05). https://doi.org/10.22146/ijc.67777

Sharma, N., Mohanakrishnan, D. & Shard, A. 2012. Stilbene-chalcone hybrids: Design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific Apoptosis. Journal of Medicinal Chemistry 55(1): 297-311.

Syahri, J., Nasution, H., Nurohmah, B.A., Purwono, B. & Yuanita, E. 2020a. Novel aminoalkylated chalcone: Synthesis, biological evaluation, and docking simulation as potent antimalarial agents. Journal of Applied Pharmaceutical Science 10(6): 1-005.

Syahri, J., Nasution, H., Nurohmah, B.A., Purwono, B., Yuanita, E. & Hassan, N.I. 2020b. Design, synthesis and biological evaluation of aminoalkylated chalcones as
antimalarial agent. Sains Malaysiana 49(11): 2667-2677.

Tse, E.G., Korsik, M. & Todd, M.H. 2019. The past, present and future of anti-malarial medicines. Malaria Journal 18(1): 93.

Tyagi, R., Rosa, B.A. & Mitreva, M. 2019. Chapter 12 - Omics-driven knowledge-based discovery of anthelmintic targets and drugs. In In Silico Drug Design: Repurposing Techniques and Methodologies, edited by Kunal Roy. Academic Press. pp. 329-358.

Wang, Y., Huang, W., Chen, S., Chen, S.Q. & Wang, S.F. 2011. Synthesis, structure and tyrosinase inhibition of natural phenols derivatives. Journal of Chinese Pharmaceutical Science 20: 235-244.

Wanare, G., Aher, R., Kawathekar, N., Ranian, R., Kaushik, N.K. & Sahal, D. 2010. Synthesis of novel -pyranochalcones and pyrazoline derivatives as Plasmodium falciparum growth inhibitor. Bioorganic and Medicinal Chemistry Letters 20(15): 4675-48678.

World Health Organization (WHO). 2020. World Malaria Report 2020: 20 Years of Global Progress and Challenges. Geneva. License: CC BY-NC-SA 3.0 IGO.

Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T. & Cao, D. 2021. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research 49(W1): W5-W14.

Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Taylor, P., Walkinshaw, M.D. & Yuthavong, Y. 2003. Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural & Molecular Biology 10(5): 357-365. 

Zerroug, A., Belaidi, S., BenBrahim, I., Sinha, L. & Chtita, S. 2019. Virtual screening in drug-likeness and structure/activity relationship of pyridazine derivatives as anti-Alzheimer drugs. Journal of King Saud University-Science 31(4): 595-601.

 

*Pengarang untuk surat-menyurat; email: purwono.bambang@ugm.ac.id

 

 

 

 

   

sebelumnya