Sains Malaysiana
51(10)(2022):
3215-3236
http://doi.org/10.17576/jsm-2022-5110-09
Substituted 3-styryl-2-pyrazoline Derivatives as an Antimalaria:
Synthesis, in vitro Assay, Molecular
Docking, Druglikeness Analysis, and ADMET Prediction
(Penggantian Terbitan 3-styryl-2-pyrazoline sebagai Antimalaria:
Sintesis, Asai in vitro, Dok Molekul, Analisis Keserupaan Dadah dan
Ramalan ADMET)
LINDA EKAWATI1, BETA ACHROMI NUROHMAH1, JUFRIZAL SYAHRI2 & BAMBANG PURWONO1,*
1Department of Chemistry, Faculty
of Mathematics and Natural Science, Universitas Gadjah Mada, Jalan Kaliurang Sekip Utara Bulaksumur 21,
Yogyakarta, 55281 Indonesia
2Department of Chemistry, Faculty of Mathematics
and Natural Sciences, Universitas Muhammadiyah Riau, Jalan
Tuanku Tambusai Ujung Nomor 1, Pekanbaru Indonesia
Diserahkan: 23 Oktober
2021/Diterima: 12 Mei 2022
Abstract
The synthesis, in
vitro antimalarial assay, molecular docking, drug-likeness analysis, and
ADMET prediction of substituted 3-styryl-2-pyrazoline derivatives as antimalaria have been conducted. The synthesis of N-phenyl (1a‒3a) and N-acetyl-substituted (1b‒3b) 3-styryl-2-pyrazolines was carried
out using dibenzalacetone derivatives and hydrazine hydrate or phenylhydrazine.
An in vitro antimalarial assay was
conducted against the chloroquine-sensitive Plasmodium
falciparum 3D7 strain, while molecular docking was performed toward the crystal protein of Plasmodium
falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) (PDB ID:
1J3I). Furthermore, the prediction of drug-like properties was determined by
assessing Lipinski’s rules, and the pharmacokinetic parameters were also
studied in-silico, including
absorption, distribution, metabolism, excretion, and toxicity (ADMET). The in vitro assay showed that 3a (IC50 0.101 µM) has excellent antimalarial activity, followed by 2a (0.177 µM), and 1b (0.258 µM). Molecular docking has supported the in vitro assay by showing the lowest
CDOCKER energy for 3a (‒56.316 kcal/mol), then 2a (‒51.2603
kcal/mol), and 1b (‒48.8774 kcal/mol). The drug-like properties
showed that all of the prepared compounds were acceptable based on Lipinski’s
rules and predicted to be potentially orally bioavailable. The ADMET analysis
provided information that 3a and 2a could be proposed as the best lead
antimalarial drugs with further modification to reduce the lipophilicity and
toxicity properties.
Keywords: ADMET; antimalarial; dibenzalacetone;
molecular docking; pyrazoline
Abstrak
Sintesis, asai
antimalaria in vitro, dok molekul, analisis keserupaan dadah dan ramalan
ADMET bagi terbitan 3-styryl-2-pyrazoline yang digantikan sebagai antimalaria
telah dijalankan. Sintesis N-fenil (1a‒3a) dan
N-acetyl-substituted (1b‒3b) 3-styryl-2-pyrazolines telah
dijalankan menggunakan terbitan dibenzalaseton dan hidrazina hidrat atau
fenilhidrazina. Ujian antimalaria in vitro telah dijalankan terhadap
strain Plasmodium falciparum 3D7 yang sensitif terhadap klorokuin,
manakala dok molekul dilakukan ke arah protein kristal Plasmodium falciparum dihidrofolat reduktase-timidilat sintase (PfDHFR-TS) (PDB ID: 1J3I). Tambahan
pula, ramalan sifat seperti ubat ditentukan dengan menilai peraturan Lipinski
dan parameter farmakokinetik juga dikaji secara in siliko, termasuk
penyerapan, pengedaran, metabolisme, perkumuhan dan ketoksikan (ADMET). Ujian in
vitro menunjukkan bahawa 3a (IC50 0.101 µM) mempunyai
aktiviti antimalaria yang sangat baik, diikuti oleh 2a (0.177 µM), dan 1b (0.258 µM). Dok molekul telah menyokong ujian in vitro dengan
menunjukkan tenaga CDOCKER terendah untuk 3a (‒56.316 kcal/mol),
kemudian 2a (‒51.2603 kcal/mol) dan 1b (‒48.8774 kcal/mol).
Sifat keserupaan dadah menunjukkan bahawa semua sebatian yang disediakan boleh
diterima berdasarkan peraturan Lipinski dan diramalkan berpotensi bio tersedia
secara oral. Analisis ADMET memberikan maklumat bahawa 3a dan 2a boleh dicadangkan sebagai ubat antimalaria terbaik dengan pengubahsuaian
selanjutnya untuk mengurangkan sifat lipofilis dan ketoksikan.
Kata kunci: ADMET; antimalaria; dibenzalaseton;
dok molekul; pirazolin
RUJUKAN
Adebayo, J.O., Tijjani, H.,
Adegunloye, A.P., Ishola, A.A., Balogun, E.A. & Malomo, S.O. 2020.
Enhancing the antimalarial activity of artesunate. Parasitology Research 119(9): 2749-2764.
Aher, R.B., Wanare, G.,
Kawathekar, N., Kumar, R.R., Kaushik, N.K., Sahal, D. & Chauhan, V.S. 2011.
Dibenzylideneacetone analogues as novel Plasmodium
falciparum inhibitors. Bioorganic and
Medicinal Chemistry Letters 21(10): 3034-2036.
Batista,
R., Silva, A.J. Jr. & de Oliveira, A.B. 2009. Plant-derived antimalarial
agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural
products. Molecules 14(8): 3037-3072.
Belete, T.M. 2020. Recent progress in the development of new antimalarial
drugs with novel targets. Drug
Design, Development and Therapy 14: 3875-3889.
Charris,
J.E., Monasterios, M.C., Acosta, M.E., Rodríguez, M.A., Gamboa, N.D., Martínez,
G.P., Rojas, H.R., Mijares, M.R. & De Sanctis, J.B. 2019. Antimalarial, antiproliferative, and apoptotic
activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual
action. Medicinal Chemistry Research 28: 2050-2066.
Chugh, A., Kumar, A., Verma, A., Kumar, S. & Kumar, P. 2020. A review of
antimalarial activity of two or three nitrogen atoms containing heterocyclic
compounds. Medicinal Chemistry Research 29: 1723-1750.
Daina, A., Michielin, O. & Zoete, V. 2017. SwissADME: A
free web tool to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Scientific Report 7: 42717.
de Souza, J.E., do Nascimento, M.F.A., Borsodi, M.P.G.,
de Almeida, A.P., Rossi-Bergmann, B., de Oliveira, A.B. & Costa, S.S. 2018.
Leaves from the tree Poincianella
pluviosa as a renewable source of antiplasmodial compounds against
chloroquine-resistant Plasmodium
falciparum. Journal of the
Brazilian Chemical Society 29(6): 1318-1327.
Dong, J., Wang, N.N., Yao,
Z.J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.P. & Cao, D.S. 2018.
ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively
collected ADMET database. Journal of
Cheminformatics 10(1): 29.
Ekawati,
L., Purwono, B. & Mardjan, M.I.D. 2020. Synthesis N-phenyl pyrazoline from
dibenzalacetone and heme polymerization inhibitory activity (HPIA) assay. Key Engineering Materials 840: 245-250.
Ertl, P., Rohde, B. & Selzer, P. 2000. Fast
calculation of molecular polar surface area as a sum of fragment-based
contributions and its application to the prediction of drug transport
properties. Journal of Medicinal
Chemistry 43(20): 3714-3717.
Hadni, H. & Elhallaoui, M. 2019. Molecular docking and QSAR studies for
modeling the antimalarial activity of hybrids 4-anilinoquinoline-triazines
derivatives with the wild-type and mutant receptor pf-DHFR. Heliyon 5(8): e02357.
Han, Y., Zhang, J., Hu, C.Q., Zhang, X., Ma, B.
& Zhang, P. 2019. In silico ADME
and toxicity prediction of ceftazidime and its impurities. Frontiers in
Pharmacology 10: 434.
Hakkola, J., Hukkanen, J., Turpeinen, M. & Pelkonen, O. 2020. Inhibition
and induction of CYP enzymes in humans: An update. Archives of Toxicology 94: 3671-3722.
Ibrahim, Z.Y., Uzairu, A., Shallangwa, G. & Abechi,
S. 2020. Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol
grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53
protein levels. Scientific African 10: e00570.
Kalaria, P.N., Karad, S.C. & Raval, D.K.
2018. A review on diverse heterocyclic compounds as the privileged scaffolds in
antimalarial drug discovery. European
Journal of Medicinal Chemistry 158: 917-936.
Kumar, P., Choonara, Y.E. & Pillay, V. 2014. In silico affinity profiling of neuroactive polyphenols for
post-traumatic calpain inactivation: A molecular docking and atomistic
simulation sensitivity analysis. Molecules 20(1):
135-168.
Leroy, D. 2017. How to tackle antimalarial resistance? EMBO Molecular Medicine 9(2): 133-134.
Lipinski, C.A., Lombardo, F., Dominy, B.W. &
Feeney, P.J. 2001. Experimental and computational approaches to estimate
solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review 46(1-3):
3-26.
Manohar, S., Khan, A.I., Kandi, A.K., Raj, K.,
Sun, G., Yang, X., Molina, A.D.C., Wang, B. & Rawat, D.S. 2013. Synthesis,
antimalarial activity and cytotoxic potential of new monocarbonyl analogues of
curcumin. Bioorganic and Medicinal
Chemistry Letters 23(1): 112-116.
Nauduri, D. & Reddy,
G.B.S. 1998 Antibacterial and antimycotics Part 1: Synthesis and activity of
2-Pyrazolines derivatives. Chemical and Pharmaceutical Bulletin 46(8):
1254-1260.
Nigam, M., Atanassova, M., Mishra, A.P.,
Pezzani, R., Devkota, H.P., Plygun, S., Salehi, B., Setzer, W.N. &
Sharifi-Rad, J. 2019. Bioactive compounds and health benefits of Artemisia
species. Natural Product Communications 14(7): 1-17.
Pajouhesh, H. & Lenz, G.R. 2005. Medicinal chemical properties
of successful central nervous system drugs. NeuroRx 2(4): 541-553.
Pandey, A.K., Sharma, S., Pandey, M., Alam,
M.M., Shaquiquzzaman, M. & Akhter, M. 2016. 4,5-Dihydrooxazole-pyrazoline
hybrids: Synthesis and their evaluation as potential antimalarial agents. European
Journal of Medicinal Chemistry 123: 476-486.
Purwono, B., Nurohmah, B.A., Fathurrohman, P.Z. & Syahri, J.
2021. Some 2-arylbenzimidazole derivatives as an antimalarial agent: Synthesis,
activity assay, molecular docking and pharmacological evaluation. Rasayan Journal of Chemistry 14(1):
94-100.
Septiana, I., Purwono, B., Anwar, C., Nurohmah,
B.A. & Syahri, J. 2022. Synthesis and docking study of
2–Aryl-4,5-diphenyl-1H-imidazole derivatives as lead compounds for antimalarial
agent. Indonesian Journal of Chemistry 22(05).
https://doi.org/10.22146/ijc.67777
Sharma, N., Mohanakrishnan, D. & Shard, A.
2012. Stilbene-chalcone hybrids: Design, synthesis, and evaluation as a new
class of antimalarial scaffolds that trigger cell death through stage specific
Apoptosis. Journal of Medicinal Chemistry 55(1): 297-311.
Syahri, J., Nasution, H., Nurohmah, B.A.,
Purwono, B. & Yuanita, E. 2020a. Novel aminoalkylated chalcone: Synthesis,
biological evaluation, and docking simulation as potent antimalarial agents. Journal of Applied Pharmaceutical Science 10(6): 1-005.
Syahri, J., Nasution, H., Nurohmah, B.A.,
Purwono, B., Yuanita, E. & Hassan, N.I. 2020b. Design, synthesis and
biological evaluation of aminoalkylated chalcones as
antimalarial agent. Sains Malaysiana 49(11): 2667-2677.
Tse, E.G., Korsik, M. & Todd, M.H. 2019. The past, present and future of
anti-malarial medicines. Malaria
Journal 18(1): 93.
Tyagi, R., Rosa, B.A. &
Mitreva, M. 2019. Chapter 12 - Omics-driven knowledge-based discovery of
anthelmintic targets and drugs. In In Silico Drug Design: Repurposing
Techniques and Methodologies, edited by Kunal Roy. Academic Press. pp.
329-358.
Wang, Y.,
Huang, W., Chen, S., Chen, S.Q. & Wang, S.F. 2011.
Synthesis, structure and tyrosinase inhibition of natural phenols derivatives. Journal of Chinese Pharmaceutical Science 20: 235-244.
Wanare, G., Aher, R., Kawathekar, N., Ranian,
R., Kaushik, N.K. & Sahal, D. 2010. Synthesis of novel
-pyranochalcones and pyrazoline derivatives as Plasmodium
falciparum growth inhibitor. Bioorganic
and Medicinal Chemistry Letters 20(15): 4675-48678.
World Health Organization (WHO). 2020. World
Malaria Report 2020: 20 Years of Global Progress and Challenges. Geneva.
License: CC BY-NC-SA 3.0 IGO.
Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z.,
Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T. & Cao, D.
2021. ADMETlab 2.0: An integrated
online platform for accurate and comprehensive predictions of ADMET
properties. Nucleic Acids Research 49(W1): W5-W14.
Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S.,
Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Taylor, P., Walkinshaw, M.D. &
Yuthavong, Y. 2003. Insights into antifolate resistance from malarial
DHFR-TS structures. Nature Structural
& Molecular Biology 10(5):
357-365.
Zerroug, A., Belaidi, S., BenBrahim, I., Sinha, L. & Chtita, S. 2019.
Virtual screening in drug-likeness and structure/activity relationship of
pyridazine derivatives as anti-Alzheimer drugs. Journal of King Saud
University-Science 31(4): 595-601.
*Pengarang untuk
surat-menyurat; email: purwono.bambang@ugm.ac.id
|