Sains Malaysiana 51(10)(2022):
3333-3345
http://doi.org/10.17576/jsm-2022-5110-18
Risk Assessment of Subcritical Water Hydrolysis (SWH) System for Sugar Recovery using
Failure Modes and Effects Analysis (FMEA) Methods
(Penilaian Risiko Sistem Hidrolisis Air Subkritikal (SWH) untuk Pemulihan Gula menggunakan Kaedah Mod Kegagalan dan Analisis Kesan (FMEA))
NURFATIMAH MOHD THANI1,2, SITI MAZLINA MUSTAPA KAMAL3*,
FARAH SALEENA TAIP3, ALIFDALINO SULAIMAN3, ROZITA OMAR4 & MOHD HAFIZZ WONDI5
1Department
of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Pusat Inovasi dan Teknologi Manisan (MANIS), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department
of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
4Department
of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
5Faculty
of Plantation and Agrotechnology, Universiti Teknologi MARA Sarawak, 96400 Mukah,
Sarawak, Malaysia
Diserahkan: 14 Mac 2022/Diterima: 9 Jun
2022
Abstract
The subcritical water
hydrolysis (SWH) process has proven to be an effective method for sugar
recovery from bakery waste. However, the natural principle of the process
involving high pressure and temperature has made it a hazardous operation.
Hence, failure mode and effect analysis (FMEA) has been applied to identify the
potential failure modes in subcritical water hydrolysis (SWH) systems. The Risk
Priority Number (RPN) approach was used to rate each potential problem during
the SWH process. The reactor unit was found to have the highest potential for
failure by RPN value of 800 with the 'failure effect analysis' on the potential
reactor cap to explode due to the very high pressure inside the reactor that
developed during SWH. The failure consequences may lead to injury or even
death. As a result of the FMEA assessment approach and several corrective
action plans, the failure risks of SWH can be reduced and managed effectively.
Keywords: Failure mode and effects
analysis (FMEA); food; Risk Priority Number (RPN) Continuous Improvement (CI);
safety; subcritical water hydrolysis (SWH)
Abstrak
Proses hidrolisis air subkritikal (SWH) telah terbukti sebagai kaedah yang berkesan untuk pemulihan gula daripada sisa bakeri. Walau bagaimanapun, prinsip semula jadi proses yang melibatkan tekanan dan suhu tinggi telah menjadikannya operasi yang berbahaya.
Oleh itu, analisis mod dan kesan kegagalan (FMEA) telah digunakan untuk mengenal pasti mod kegagalan yang berpotensi dalam sistem hidrolisis air subkritikal (SWH). Pendekatan Nombor Keutamaan Risiko (RPN) digunakan untuk menilai setiap masalah yang berpotensi semasa proses SWH. Unit reaktor didapati mempunyai potensi kegagalan yang paling tinggi dengan nilai RPN 800 dengan 'analisis kesan kegagalan' pada penutup reaktor berpotensi meletup kerana tekanan yang sangat tinggi di dalam reaktor yang berkembang semasa SWH. Akibat daripada kegagalan boleh membawa kepada kecederaan atau kematian. Hasil daripada pendekatan penilaian FMEA dan beberapa pelan tindakan pembetulan, risiko kegagalan SWH dapat dikurangkan dan diuruskan dengan berkesan.
Kata kunci: Hidrolisis air subkritikal (SWH); keselamatan; makanan; mod kegagalan dan analisis kesan (FMEA); Nombor Keutamaan Risiko (RPN) Penambahbaikan Berterusan (CI)
RUJUKAN
Amin, N., Sabli, N., Izhar,
S. & Yoshida, H. 2020. Production of valuable materials from sago bark
using subcritical water treatment. International Journal of Engineering
Research and Technology 13(1): 1-11.
Balaraju, J., Govinda Raj,
M. & Murthy, C.S.N. 2020. Prediction and assessment of LHD machine
breakdowns using failure mode effect analysis (FMEA). In Reliability, Safety
and Hazard Assessment for Risk-Based Technologies. Lecture Notes in Mechanical
Engineering, edited by Varde, P., Prakash, R. & Vinod, G. Singapore:
Springer. https://doi.org/10.1007/978-981-13-9008-1_70
Balmforth, H., Keeley, D.
& Gadd, S. 2003. Good Practice and Pitfalls in Risk Assessment. Sheffield, United Kingdom: Health and Safety Laboratory.
Bhuiyan, N. & Baghel, A. 2005. An
overview of continuous improvement: From the past to the present. Management
Decision 43(5): 761-771. doi:10.1108/00251740510597761
Carlson, C. 2014.
Understanding and applying the fundamentals of FMEAs. Annual Reliability and
Maintainability Symposium.
Caroly, S., Coutarel, F., Landry, A. &
Marry-Cheray, I. 2010. Sustainable MSD prevention: Management for continuous
improvement between prevention and production. Ergonomic in two assembly line
companies. Applied Ergonomics 41: 591-599.
Catelani, M., Ciani, L.
& Venzi, M. 2018. Failure modes, mechanisms, and effect analysis on
temperature redundant sensor stage. Reliability Engineering & System
Safety 180: 425-433.
Chi, C.F., Sigmund, D. &
Octavianus, M. 2020. Classification scheme for root cause and failure modes and
effects analysis (FMEA) of passanger vehicle recalls. Reliability
Engineering & System Safety 2020: 106929.
Du,
H., Zeng, L., Liu, S., Li, X., Yuan, Z., Xie, C., Liu, W., Yang, X., Chen, Z.
& Li, Z. 2019. Numerical investigation on the influence of
nozzle–organization–mode of split burner on flow field distribution and
combustion characteristics of a 300-MWe subcritical down-fired boiler. Asia-Pacific
Journal of Chemical Engineering 14(6): e2365.
https://doi.org/https://doi.org/10.1002/apj.2365
Ebeling, C. 2004. An
Introduction to Reliability and Maintainability Engineering. Tata
McGraw-Hill Education.
Essien, S., Young, B. &
Baroutian, S. 2020. Recent advances in subcritical water and supercritical
carbon dioxide extraction of bioactive compounds from plant materials. Trends
in Food Science & Technology 97: 156-169.
Gheibi, M., Karrabi, M. & Eftekhari, M.
2019. Designing a smart risk analysis method for gas chlorination units of
water treatment plants with combination of failure mode analysis, shannon
entropy, and petri net modeling. Ecotoxicology and Environmental Safety 171:
600-608.
Greiserman, S., Epstein, M.,
Chemodanov, A., Steinbruch, E., Prabhu, M., Guttman, L., Jinjikhashvily, G.,
Shamis, O., Gozin, M., Kribus, A. & Golberg, A. 2019. Co-production of
monosaccharides and hydrochar from green macroalgae Ulva (Chlorophyta)
sp. with subcritical hydrolysis and carbonization. Bioenergy Research 12:
1090-1103.
Hassan, S., Wang, J.,
Kontovas, C. & Bashir, M. 2022. Modified FMEA hazard identification for
cross-country petroluem pipepline using Fuzzy Rule Base and approximate
reasoning. Journal of Loss Prevention in the Process Industries 74:
104616.
Hau, E. 2010. Explosion
Involving a Vessel used in a Hydrothermal Process. Hong Kong.
http://www.safety.hku.hk/homepage/pdf/SMExp.pdf
Imteaz,
M.A. & Shanableh, A. 2004. Kinetic model for the water oxidation method for
treating wastewater sludges. Developments in Chemical Engineering and
Mineral Processing 12(5-6): 515-530. https://doi.org/10.1002/apj.5500120507
Huang, J., You, J., Liu, H.
& Song, M. 2020. Failure mode and effect analysis improvement: A systematic
literature review and future research agenda. Reliability Engineering and
System Safety 199: 106885.
Lachos-Perez, D., Baseggio,
A., Torres-Mayanga, P.C., Ávila, P.F., Tompsett, G.A., Marostica, M., Goldbeck,
R., Timko, M.T., Rostagno, M., Martinez, J. & Forster-Carneiro, T. 2020.
Sequential subcritical water process applied to orange peel for the recovery
flavanones and sugars. The Journal of Supercritical Fluids 160: 104789.
Lachos-Perez, D., Tompsett,
G., Guerra, P., Timko, M., Rostagno, M., Martinez, J. & Forster-Carneiro,
T. 2017. Sugars and char formation on subcritical water hydrolysis of sugarcane
straw. Bioresource Technology 243: 1069-1077.
Mhetre, R. & Dhake, R. 2012. Using
failure mode effect analysis in a precision sheet metal parts manufacturing
company. International Journal of Applied Science and Engineering Research 1: 302-312. doi:10.6088/ijaser.0020101031
Mohd Thani, N., Mustapa
Kamal, S., Taip, F., Sulaiman, A., Omar, R. & Siajam, S. 2020a. Hydrolysis
and characterization of sugar recovery from bakery waste under optimized
subcritical water conditions. Journal of Food Science and Technology 57(8): 3108-3118.
Mohd Thani, N., Mustapa
Kamal, S., Taip, F., Sulaiman, A., Omar, R. & Izhar, S. 2020b. Sugar
recovery from food waste via sub-critical water treatment. Food Reviews
International 36(3): 241-257.
Muharja, M., Fadhilah, N.,
Nurtono, T. & Widjaja, A. 2020. Enhancing enzymatic digestibility of
coconut husk using nitrogen-assisted subcritical water for sugar production. Bulletin
of Chemical Reaction Engineering & Catalysis 15(1): 84-95.
Pangestuti, R., Siahaan, E.,
Untari, F. & Chun, B. 2020. Biological activities of Indonesian mangroves
obtained by subcritical water extraction. IOP Conference Series: Earth and
Environmental Science 441(1):
012101.
Parsana, T. & Patel, M.
2014. A case study: A process FMEA tool to enhance quality and efficieny of
manufacturing industry. Bonfring International Journal of Industrial
Engineering and Management Science 4(3):
145-152.
Patel, M.S., Patel, A.D. & Damor, S.
2022. Design and development of dual release reconstitutable oral suspension of
cefpodoxime proxetil for pediatric patient using risk-based quality by design
approach. J. Pharm. Innov. 17:
955-978. https://doi.org/10.1007/s12247-021-09577-y
Peeters, J., Basten, R.
& Tinga, T. 2018. Improving failure analysis efficiency by combining FTA
and FMEA in a recursive manner. Reliability Engineering & System Safety 172: 36-44.
Poms, J., Sacher, S.,
Nixdorf, M., Dekner, M., Wallner-Mang, S., Jansses, I. & Khinast, J. 2019.
The need for new control strategies for particulate matter in parenterals. Pharnaceutical
Development and Technology 24(6): 739-750.
Santos, M., Zabot, G.,
Mazutti, M., Ugalde, G., Rezzadori, K. & Tres, M. 2020. Optimization of
subcritical water hydrolysis of pecan wastes biomasses in a semi-continuous
mode. Bioresource Technology 306:
123129.
Shinde, R.R.,
Shrivastava, R. & Morey, R.B. 2015. Failure mode effect analysis - case
study for Bush Manufacturing process. International Journal of Scientific
Engineering and Applied Science (IJSEAS) 1(4): 283-294.
Sousa, S. 2007. The
continuous improvement process in practice. ICQR 2007- 5th International
Conference on Quality and Reliability, Chiang Mai, Thailand. pp. 118-122.
Vinodh, S. & Chintha, S.K. 2011. Leanness
assessment using multi-grade fuzzy approach. International Journal of
Production Research 49(2):
431-445. doi:10.1080/00207540903417494
Wiboonsirikul,
J., Nakata, K., Kobayashi, T., Khuwijitjaru, P. & Adachi, S. 2015.
Degradation of disaccharides containing two glucose units in subcritical water. Asia-Pacific Journal of Chemical Engineering 10(5): 681-686. https://doi.org/https://doi.org/10.1002/apj.1900
*Pengarang untuk surat-menyurat; email:
smazlina@upm.edu.my
|