Sains Malaysiana 51(10)(2022): 3401-3414

http://doi.org/10.17576/jsm-2022-5110-23

 

Isolation of Lactic Acid Bacteria from Cocoa Bean Fermentation as Potential Antibacterial Agent against ESKAPE Pathogens

(Pemencilan Asid Laktik Bakteria daripada Penapaian Biji Koko sebagai Agen Antibakteria yang Berpotensi terhadap Patogen ESKAPE)

 

NORAZIAH MOHAMAD ZIN1,*, AUNI NADZIRAH ABD RASHID1, NUR ASYIKIN ZULKHAIRI1, NUR AQILAH RIDZMAN1, KHAIRUL BARIAH SULAIMAN2,  NUR FAIZAH ABU BAKAR1 & ASIF SUKRI1

1Programme of Biomedical Science, Centre of Diagnostic, Therapeutic & Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Cocoa Research & Development Centre Hilir Perak, Malaysian Cocoa Board, P. O. Box 30, Sg. Dulang Road, 36307 Sg Sumun, Perak Darul Ridzuan, Malaysia

 

Diserahkan: 26 April 2022/Diterima: 2 Ogos 2022

 

Abstract

This study aimed to evaluate the antibacterial activity of microorganisms isolated before and during cocoa fermentation against ESKAPE pathogens. Microorganisms from cocoa fermentation process were isolated on the selective media and were tested against ESKAPE pathogens. Total titratable acidity, minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of cell-free supernatant from lactic acid bacteria (LAB) were determined. The presence of bacteriocin and antibacterial activity were determined. LAB was identified through molecular and biochemical tests. Ninety-five and 134 isolates were obtained from the fermentation of Sungai Balung 25 (BR25) clone and mixed clones, respectively.  Screening of antibacterial activity showed that 26 isolates of LAB from the cocoa fermentation process had antibacterial activity against ESKAPE pathogens (zone of inhibition ≥11 mm). Cell-free supernatant from some LAB demonstrated potent antibacterial activity against some ESKAPE pathogens through MIC and MBC and evaluation. Furthermore, one isolate (mix48M01) exhibited antibacterial activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter spp., methicillin-resistant Staphylococcus aureus, and Enterococcus raffinousus. An increase in the diameter of inhibition zone was observed as the lactic acid production increased. Gram-positive bacteria isolates were more resistant to LAB than Gram-negative bacteria. Bacteriocin with good antibacterial activity was also detected from the LAB examined. Molecular analysis showed that 13 LAB shared >99% sequence similarity to Lactobacillus fermentum CECT 562 while one isolate shared sequence similarity <98%, indicating that it might be a novel Lactobacillus species. Isolated LAB from this study exhibited high antibacterial activity against ESKAPE pathogens and could be investigated further as potential probiotics and antibacterial agents in the future.

 

Keywords: Antibacterial; cocoa fermentation; ESKAPE pathogens; lactic acid bacteria; Lactobacillus

 

Abstrak

Kajian ini bertujuan menilai aktiviti antibakteria mikroorganisma dipencilkan daripada sebelum dan selepas penapaian koko. Mikoorganisma daripada penapaian koko dipencilkan di atas media selektif dan diuji ke atas patogen ESKAPE. Keasidan boleh titrat, kepekatan perencat minimum (MIC) dan kepekatan bakterisid minimum (MBC) daripada supernatan tanpa sel bakteria laktik asid (LAB) ditentukan. Kehadiran bakteriosin dan aktiviti antibakteria ditentukan. LAB dikenal pasti menggunakan kaedah biokimia dan molekul. Sembilan puluh lima dan 134 pencilan masing-masing dipencilkan daripada klon Sungai Balung (BR25) dan klon campuran. Saringan aktiviti antibakteria menunjukkan 26 pencilan mempunyai aktiviti terhadap patogen ESKAPE (zon perencatan ≥11 mm). Supernatan tanpa sel menunjukkan aktiviti antibakteria melalui penilaian MIC dan MBC. Satu pencilan (mix48M01) menunjukkan aktiviti terhadapKlebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter spp., rintangan metisilin Staphylococcus aureus dan Enterococcus raffinousus. Peningkatan diameter zon perencatan dapat diperhatikan apabila kepekatan asid laktik bertambah. Bakteria Gram positif adalah lebih rintang terhadap LAB berbanding dengan Gram negatif. Bakteriosin dengan aktiviti antibakteria yang baik turut dikesan. Analisis molekul menunjukkan 13 pencilan mempunyai penjujukan DNA sama >99% dengan Lactobacillus fermentum CECT 562, manakala satu pencilan mempunyai penjujukan <98%, mencadangkan spesis Lactobacillus yang baharu. Pencilan LAB yang dipencilkan dalam kajian ini menunjukkan aktiviti antibakteria yang baik terhadap patogen ESKAPE dan boleh dikaji dengan lebih mendalam lagi pada masa hadapan.

 

Kata kunci: Antibakteria; asid laktik bakteria; Lactobacillus; patogen ESKAPE; penapaian koko

 

RUJUKAN

Ahmad, A., Yap, W.B., Kofli, N.T. & Ghazali, A.R. 2018. Probiotic potentials of Lactobacillus plantarum isolated from fermented durian (Tempoyak), a Malaysian traditional condiment. Food Sci. Nutr. 6(6): 1370-1377.

Azhar, I. & Lee, M.T. 2004. Perspective for cocoa cultivation in Malaysia: Re-look at the economic indicators. Malaysian Cocoa Journal 1: 1-18.

Basri, D.F., Tan, L.S., Shafiei, Z. & Zin, N.M. 2012. In vitro antibacterial activity of galls of Quercus infectoria Olivier against oral pathogens. Evid. Based Complement Alternat. Med. 2012: 632796.

Bullerman, L.B. 2004. SPOILAGE | Fungi in food - An overview. In Encyclopedia of Food Sciences and Nutrition, 2nd ed., edited by Caballero, B. Massachusetts: Academic Press. pp. 5511-5522. https://doi.org/10.1016/B0-12-227055-X/01129-9

Camu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J.S., Vancanneyt, M. & De Vuyst, L. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73(6): 1809-1824.

Chen, C.C., Lai, C.C., Huang, H.L., Huang, W.Y., Toh, H.S., Weng, T.C., Chuang, Y.C., Lu, Y.C. & Tang, H.J. 2019. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front Microbiol. 10: 789.

Chin, H.H. 2006. Cocoa pulp juice. Malaysia Cocoa 3(1): 8-9.

CLSI. 2017. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute

George, F., Daniel, C., Thomas, M., Singer, E., Guilbaud, A., Tessier, F.J., Revol-Junelles, A-M., Borges, F. & Foligné, B. 2018. Occurrence and dynamism of lactic acid bacteria in distinct ecological niches: A multifaceted functional health perspective. Front Microbiol.  9: 2899.

Gomes, R.J., Borges, M.F., Rosa, M.F., Castro-Gómez, R. & Spinosa, W.A. 2018. Acetic acid bacteria in the food industry: Systematics, characteristics and applications. Food Technol. Biotechnol. 56(2): 139-151.

Liévin-Le Moal, V. & Servin, A.L. 2014. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27(2): 167-199.

Mathur, H., Field, D., Rea, M.C., Cotter, P.D., Hill, C. & Ross, R.P. 2017. Bacteriocin-antimicrobial synergy: A medical and food perspective. Front Microbiol. 8: 1205.

Meersman, E., Steensels, J., Mathawan, M., Wittocx, P.J., Saels, V., Struyf, N., Bernaert, H., Vrancken, G. & Verstrepen, K.J. 2013. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS ONE 8(12): e81559.

Moreno-Montoro, M., Olalla-Herrera, M., Rufián-Henares, J.Á., Martínez, R.G., Miralles, B., Bergillos, T., Navarro-Alarcón, M. & Jauregi, P. 2017. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and physicochemical property relationship of the peptide components. Food Funct. 8(8): 2783-2791.

Mulani, M.S., Kamble, E.E., Kumkar, S.N., Tawre, M.S. & Pardesi, K.R. 2019. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 10: 539.

Mutani, J.M. & Arias, C.A. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2): VMBF-0016-2015.

Okuda, K-I., Zendo, T., Sugimoto, S., Iwase, T., Tajima, A., Yamada, S., Sonomoto, K. & Mizunoe, Y. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 57(11): 5572-5579.

Papalexandratou, Z., Lefeber, T., Bakhtiar, B., Ong, S.L., Daniel, H.M. & De Vuyst, L. 2013. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol. 35(2): 73-85.

Pereira, G.V., Miguel, M.G., Ramos, C.L. & Schwan, R.F. 2012. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl. Environ. Microbiol. 78(15): 5395-5405.

Pettit, R.K. 2009. Mixed fermentation for natural product drug discovery. Appl. Microbiol. Biotechnol. 83(1): 19-25.

Rasamiravaka, T., Labtani, Q., Duez, P. & El Jaziri, M. 2015. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms.  Biomed. Res. Int. 2015: 759348.

Romanens, E., Freimüller Leischtfeld, S., Volland, A., Stevens, M.J.A., Krähenmann, U., Isele, D., Fischer, B., Meile, L. & Miescher Schwenninger, S. 2019. Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. Int. J. Food Microbiol. 290: 262-272.

Sharma, V., Harjai, K. & Shukla, G. 2018. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol. (Praha). 63(2): 181-190.

Santos, R.X., Oliveira, D.A., Sodré, G.A., Gosmann, G., Brendel, M. & Pungartnik, C. 2014. Antimicrobial activity of fermented Theobroma cacao pod husk extract. Genet. Mol. Res. 13(3): 7725-7735.

Sukri, A., Saat, M.N.F., Mohd Yusof, N.A., Zin, N.M. & Abdul Rachman, A.R. 2021. Differences in antibiotic resistance profiles of methicillin-susceptible and–resistant Staphylococcus aureus isolated from the teaching hospital in Kuala Lumpur, Malaysia. J. Appl. Biol. Biotechnol. 9(4): 98-103.

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E.M., Houchens, C.R., Grayson, M.L., Hansen, P., Singh, N., Theuretzbacher, U., Magrini, N. & WHO Pathogens Priority List Working Group. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 18(3): 318-327.

Tamang, J.P., Watanabe, K. & Holzapfel, W.H. 2016. Review: Diversity of microorganisms in global fermented foods and beverages. Front Microbiol. 7: 377.

Thompson, S.S., Miller, K.B. &  Lopez, A.S. 2007. Cocoa and coffee. In Food Microbiology: Fundamental and Frontiers, edited by Doyle, M. & Beuchat, L. ASM Press. pp. 837-850.

Vuyst, L.D. & Leroy, F. 2020. Functional role of yeasts, lactic acid bacteria and acetic acid bacteria in cocoa fermentation processes. FEMS Microbiol Rev. 44(4): 432-453.

Yoon, J.H., Kang, S.S., Mheen, T.I., Ahn, J.S., Lee, H.J., Kim, T.K., Park, C.S., Kho, Y.H., Kang, K.H. & Park, Y.H. 2000. Lactobacillus kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50(5): 1789-1795.

Zaharuddin, L., Mokhtar, N.M., Muhammad Nawawi, K.N. & Raja Ali, R.A. 2019. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 19(1): 131.

Zhen, X., Lundborg, C.S., Sun, X., Hu, X. & Dong, H. 2019. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control. 8: 137.

 

*Pengarang untuk surat-menyurat; email: noraziah.zin@ukm.edu.my

 

 

 

   

sebelumnya