Sains Malaysiana
51(10)(2022):
3449-3461
http://doi.org/10.17576/jsm-2022-5110-27
Taburan
Parasit Anura dan Indeks Kualiti Air di Kawasan Tasik dan Tanah Bencah Putrajaya
(Distribution
of Anuran Parasite and Water Quality Indices at Putrajaya Lake and Wetland)
HANI KARTINI AGUSTAR1,*, AMATUL
HAMIZAH ALI2, NORHAYATI AHMAD3 & MUHAMMAD ZULFADHLI NASIRUDDIN LIM1
1Department of Earth Science and Environment, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Department of Chemical Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department of Biological Sciences and Biotechnology, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan: 13 Mac
2022/Diterima: 25 Jun 2022
Abstrak
Populasi anura (katak) di sesuatu ekosistem
boleh menjadi penunjuk biologi bagi tahap kebersihan. Populasi yang rendah atau
kadar kematian anura yang tinggi di sesuatu persekitaran menunjukkan ekosistem
kawasan tersebut adalah tidak stabil, contohnya akibat pencemaran air atau
kadar jangkitan parasit yang tinggi. Objektif kajian ini adalah untuk
menentukan kepelbagaian spesies anura, mengenal pasti taburan parasit yang
menjangkiti anura di kawasan tasik dan Tanah
Bencah Putrajaya dan menentukan
hubungan antara indeks kualiti air dengan taburan parasit dan anura. Sebanyak
74 ekor katak telah ditangkap sepanjang tempoh persampelan yang tergolong
daripada lima famili dan enam spesies yang berbeza. Indeks kepelbagaian Shannon
menunjukkan stesen LE, UN, UW, P.7 dan P.10 mempunyai nilai indeks
kepelbagaian iaitu 1˗3 bermaksud kepelbagaian spesies anura adalah
sederhana. Sebanyak 2437 ekor parasit telah ditemui pada semua 74 ekor
katak yang telah dibedah dalam kajian ini. Anggaran 86.5% katak
di kawasan Putrajaya telah dijangkiti parasit. Status indeks kualiti air bagi
kesemua stesen Putrajaya adalah bersih hingga sederhana bersih (kelas II hingga
III). Ujian
Kruskal-Wallis mendapati bahawa taburan parasit pada anura di setiap stesen UE,
UW, UN, LE, CW, P.7 dan P.10 adalah tidak signifikan (X² =9.28; df=6;
p>0.05). Ini bermaksud tiada perbezaan signifikan antara taburan parasit
pada anura di setiap kawasan dan jangkitan parasit ini adalah tidak
dipengaruhi oleh indeks kualiti air di sesuatu stesen kajian.
Kata kunci: Amfibia; anura;
indeks kualiti air; protozoa; taburan parasit; Tanah Bencah Putrajaya; tasik Putrajaya
Abstract
The anuran population in an ecosystem is a
good indicator of the cleanliness of the environment. A low anuran population
or a high anuran mortality rate in an environment indicates that the ecosystem
of the surrounding area is unstable, such as exposure to polluted water or high
parasite distribution. The objective of this study was to determine the
diversity of anuran species, the distribution of anuran parasites in Putrajaya
lake and Wetland Putrajaya, and the relationship between water quality index with
the distribution of parasites and anuran. A total of 74 frogs were caught
during the sampling period, representing five families and six anuran species.
According to the Shannon diversity indices, sampling stations LE, UN, UW, P.7,
and P.10 had a diversity index value of 1˗3 indicating that the diversity
of anuran species was moderate. A total of 2437 parasites were identified from
74 dissected frogs in this study. Parasites have infected an estimated 86.5% of
frogs in the Putrajaya area. The water quality index status for all Putrajaya
stations is considered clean to moderately clean (Class II to III). The
Kruskal-Wallis test showed that the parasite distribution on the anurans at
each station UE, UW, UN, LE, CW, P.7, and P.10 was not significant (X² =9.28;
df=6; p> 0.05). This means that there is no significant difference in the
distribution of parasites on the anurans in each area, and the infection of
these parasites is unaffected by the water quality indices at the sampling
stations.
Keywords: Amphibians; anuran; parasite distribution; protozoa; Putrajaya lake;
water quality index; Wetland Putrajaya
RUJUKAN
Adesuyi, A.A., Nnodu, V.C., Njoku, K.L.
& Jolaoso, A. 2015. Nitrate and phosphate pollution in surface water of
Nwaja Creek, Port Harcourt, Niger Delta, Nigeria. International Journal of
Geology, Agriculture and Environmental Sciences 3(5): 14-20.
Alford,
R.A. & Richards, S.J. 1999. Global amphibian declines: A problem in applied
ecology. Annual Review of Ecology and Systematics 30(1): 133-165.
APHA. 2005. Standard Methods for the Examination of Water and Waste Water. 21st
ed. Washington: American Public Health Association.
Benelli, G. & Mehlhorn, H. 2016.
Declining malaria, rising of dengue and Zika virus: insights for mosquito
vector control. Parasitology Research 115(5): 1747-1754.
Bernardo-Cravo, A.P., Schmeller, D.S.,
Chatzinotas, A., Vredenburg, V.T. & Loyau, A. 2020. Environmental factors
and host microbiomes shape host–pathogen dynamics. Trends in Parasitology 36(7): 616-633.
Blaustein, A.R., Urbina, J., Snyder, P.W.,
Reynolds, E., Dang, T., Hoverman, J.T., Han, B., Olson, D.H., Searle, C. &
Hambalek, N.M. 2018. Effects of emerging infectious diseases on amphibians: A
review of experimental studies. Diversity 10(3): 81.
Ceballos, G., Ehrlich, P.R. & Dirzo, R.
2017. Biological annihilation via the ongoing sixth mass extinction signaled by
vertebrate population losses and declines. Proceedings of the National
Academy of Sciences 114(30): E6089-E6096.
Chapman, D. 2021. Water Quality
Assessments: A Guide to the Use Of Biota, Sediments and Water in Environmental
Monitoring. Boca Raton: CRC Press.
Clare, H. & David, R. 2017. Global Health and Geographical Imaginaries. Taylor & Francis.
Collins, J.P. & Storfer, A. 2003.
Global amphibian declines: Sorting the hypotheses. Diversity and
Distributions 9(2): 89-98.
DOE. 2008. Malaysia Environmental Quality Report 2007. Department of
Environment. Putrajaya: Ministry of Natural Resources and Environment.
Dorcas,
M.E., Dorcas, M. & Gibbons, W. 2011. Frogs: The Animal Answer Guide.
Baltimore: John Hopkins University Press.
Düşen, S. & Yaka, H. 2014.
Helminths of the eastern tree frog, Hyla orientalis, Bedriaga, 1890
(Anura: Hylidae), collected from Denizli province, inner-west Anatolia Region,
Turkey. Helminthologia 51(1): 37-45.
Goater, T.M., Goater, C.P. & Esch, G.W.
2014. Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge: Cambridge University Press.
Kadlec, H.R. & Wallace, S. 2008. Treatment
Wetlands. 2nd ed. Boca Raton: CRC Press.
Hayes, T.B., Falso, P., Gallipeau, S. &
Stice, M. 2010. The cause of global amphibian declines: A developmental
endocrinologist's perspective. Journal of Experimental Biology 213(6):
921-933.
Hua, J., Wuerthner, V.P., Jones, D.K.,
Mattes, B., Cothran, R.D., Relyea, R.A. & Hoverman, J.T. 2017. Evolved
pesticide tolerance influences susceptibility to parasites in amphibians. Evolutionary
Applications 10(8): 802-812.
Inger, R.F. & Stuebing, R.B. 2005. A
Field Guide to the Frogs of Borneo. 2nd
ed. Natural History Publications (Borneo) in association with
Science and Technology Unit.
Kinidi, L., Salleh, S., Wahab, N., Wei, T.,
Rahman, N. & Atan, M. 2017. Ammoniacal nitrogen uptake by macrophytes with
phytoremediation. Research & Reviews:
Journal of Engineering and Technology 6(1): 28-35.
Liu, H., Hu, Z., Zhang, J., Ngo, H.H., Guo,
W., Liang, S., Fan, J., Lu, S. & Wu, H. 2016. Optimizations on supply and distribution of
dissolved oxygen in constructed wetlands: A review. Bioresource Technology 214: 797-805.
Mayes, W.M., Batty, L.C., Younger, P.L.,
Jarvis, A.P., Kõiv, M., Vohla, C. & Mander, U. 2009. Wetland treatment at
extremes of pH: A review. Science of the Total Environment 407(13):
3944-3957.
Norhayati, A., Nurul Ain, N., Farhah, I.,
Isma Nabila, Z., Nur Iddiana, I. & Daicus, B. 2016. Distribution of anurans in urban wetland at
Putrajaya, Malaysia. Malayan Nature
Journal 68(3): 63-72.
Rahman,
W.A. & Shakinah, Z. 2015. Influence of some environmental parameters on
some frog populations and their parasitic fauna. Journal of Veterinary
Science and Technology 6(3): 227-231.
Reichenbach-Klinke, H. & Elkan, E.
2013. The Principal Diseases of Lower Vertebrates. Elsevier.
Seelig, B. 2006. Water Quality and Wetland Function in the Northern Prairie Pothole
Region. http://region8water.colostate.edu/PDFs/Wave%20Papers/wq1313.pdf
Simon, E., Puky, M., Braun, M. &
Tóthmérész, B. 2011. Frogs and toads as biological indicators in environmental
assessment. Chapter 7. In Frogs: Biology, Ecology and Uses, edited by
Murray, J.L. New York: Nova Science Publishers Inc. hlm. 141-150.
Sures, B., Nachev,
M., Selbach, C. & Marcogliese,
D.J. 2017. Parasite responses to pollution: What we know and where we go in
‘Environmental Parasitology’. Parasites & Vectors 10(1): 1-19.
Suzanna, E., Satrija, F., Kusrini, M.D.
& Fania, D. 2006. Identifikasi nematoda gastrointestinal pada katak Fejervarya cancrivora dan Limnonectes macrodon di Wilayah
Kabupaten Bogor, Jawa Barat. Media Konservasi 11(1): 21-25.
Timothy,
M.G., Cameron, P.G. & Gerald, W.E. 2014. Parasitism: The Diversity and
Ecology of Animal Parasites. Cambridge: Cambridge University Press.
Trocchia,
S., Labar, S., Abdel Gawad, F.K., Rabbito, D., Ciarcia, G. & Guerriero, G.
2015. Frog gonad as bio-indicator of Sarno River health. Journal of
Scientific and Engineering Research 6(1): 449-456.
*Pengarang untuk surat-menyurat; email:
hani_ag@ukm.edu.my
|