Sains Malaysiana
51(10)(2022):
3463-3479
http://doi.org/10.17576/jsm-2022-5110-28
Konsep Penghibridan 4-Aminokuinolina sebagai Alternatif Agen Antiplasmodium
(4-Aminoquinoline Hybridization Concept as Alternative
Antiplasmodial Agent)
NURFARAHANIM MUHAMMAD ZUBIR1,
MOHD RIDZUAN MOHD ABD RAZAK2, AMATUL HAMIZAH ALI1, MUKRAM
MOHAMED MACKEEN1,3 & NURUL IZZATY HASSAN1,*
1Department of Chemical Sciences, Faculty of Science &
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Herbal Medicine Research Centre, Institute for Medical
Research, National Institute of Health (NIH) Complex, Ministry of Health
Malaysia, 40170 Shah Alam, Selangor
3Institute of Systems Biology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 24 Februari 2022/Diterima: 29 Jun 2022
Abstrak
Kemunculan strain
parasit yang rintang terhadap hampir semua ubatan antimalaria telah mendorong
para saintis mengkaji penggantian mekanisme tindakan alternatif yang lebih
berkesan. Keberkesanan rawatan semasa antimalaria adalah terhad dari segi bio
ketersediaan ubat yang rendah, ketoksikan ubat yang tinggi dan kadar
keterlarutan dalam air yang rendah. Penghibridan adalah satu strategi menarik
bagi mengembangkan konsep penemuan ubat antimalaria. Kerangka 4-aminokuinolina
telah disasarkan dalam kebanyakan proses reka bentuk agen antiplasmodium kerana
kos sintesisnya yang murah, selamat dan kurang toksik sejak 20 tahun yang lalu.
Penemuan hibrid antiplasmodium menggunakan kerangka 4-aminokuinolina dan
pelbagai moieti seperti artemisinin, piperidin, indolin, pirimidin telah
menunjukkan aktiviti antiplasmodium yang baik. Walau bagaimanapun, sehingga
kini penemuan hibrid ini masih tidak dapat dibangunkan dan memasuki ujian
percubaan klinikal. Ulasan ini meringkaskan penemuan hibrid antiplasmodium yang telah diterbitkan dalam tempoh sebelas tahun ke belakang (2011-2021).
Kelebihan dan kelemahan konsep penghibridan sebagai pengganti agen
antiplasmodium sedia ada dibincangkan. Analisis kajian menunjukkan hibrid
4-aminokuinolina mempunyai aktiviti antiplasmodium yang setanding atau lebih
baik secara in vitro berbanding
rawatan profilaksis klorokuina. Hibrid kuinolina kelas IV adalah yang paling
kerap dikaji dan diperoleh dalam kajian ini sepanjang tempoh sebelas tahun ke
belakang. Kekurangan data praklinikal
terperinci mengenai hibrid yang disintesis telah menghalang kajian lanjut dalam
ujian klinikal.
Kata kunci: Hibrid; literatur sistematik; malaria; Plasmodium falciparum; 4-aminokuinolina
Abstract
The emergence of
parasitic strains’ resistant to
almost all antimalarial drugs has prompted scientists to study more effective
alternative mechanisms of action. Current antimalarial treatment is limited due
to poor drug bioavailability, high drug toxicity, and low aqueous solubility. Hybridization
is an exciting strategy in antimalarial drug discovery. The
4-aminoquinoline framework has been targeted in the design of various
antiplasmodial agents because its synthesis is low cost, safe and has been used over the past 20 years. The discovery
of antiplasmodial hybrids using the 4-aminoquinoline framework and various
moieties such as artemisinin, piperidine, indoline, and pyrimidine have shown
good antiplasmodial activity. However, these hybrids are still not fully
developed for clinical trials. This literature review
summarises the findings of antiplasmodial hybrids published over the past
eleven years (2011-2021). The advantages and disadvantages of hybridization as
a substitute for existing antiplasmodial agents are discussed. This review reports that
4-aminoquinoline hybrids had comparable or better in vitro antiplasmodial activity than the
chloroquine prophylaxis treatment. Class IV quinoline hybrids were the most
frequently studied and obtained in this study over the past eleven years. The
lack of detailed preclinical data on
the synthesised hybrids has hampered further studies in clinical trials.
Keywords: Hybrid; malaria; Plasmodium falciparum; systematic literature; 4-aminoquinoline
RUJUKAN
Agarwal, D., Gupta, R.D. &
Awasthi, S.K. 2017. Are antimalarial hybrid molecules a close reality or a
distant dream? Antimicrobial Agents and
Chemotherapy 61(5): e00249-17. https://doi.org/10.1128/AAC.00249-17
Andayi, W.A., Egan, T.J., Gut, J.,
Rosenthal, P.J. & Chibale, K. 2013. Synthesis, antiplasmodial activity, and
β-hematin inhibition of hydroxypyridone-chloroquine hybrids. ACS Medicinal Chemistry Letters 4(7):
642-646. https://doi.org/10.1021/ml4001084
Baartzes, N., Jordaan, A., Warner,
D.F., Combrinck, J., Taylor, D., Chibale, K. & Smith, G.S. 2020.
Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III)
aminoquinoline-benzimidazole hybrid complexes. European Journal of Medicinal Chemistry 206: 112694.
https://doi.org/10.1016/j.ejmech.2020.112694
Basilico, N., Parapini, S.,
Sparatore, A., Romeo, S., Misiano, P., Vivas, L., Yardley, V., Croft, S.L.,
Habluetzel, A., Lucantoni, L., Renia, L., Russell, B., Suwanarusk, R., Nosten,
F., Dondio, G., Bigogno, C., Jabes, D. & Taramelli, D. 2017. In vivo and in vitro activities and ADME-tox profile of a
quinolizidine-modified 4-aminoquinoline: A potent anti-P. falciparum and Anti-P. viva blood-stage antimalarial. Molecules 22(12): 1-15. https://doi.org/10.3390/molecules22122102
Bhagat, S., Arfeen, M., Das, G.,
Ramkumar, M., Khan, S.I., Tekwani, B.L. & Bharatam, P.V. 2019. Design,
synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea
derivatives as antimalarial agents. Bioorganic
Chemistry 91(January): 103094. https://doi.org/10.1016/j.bioorg.2019.103094
Bhat, H.R., Singh, U.P., Yadav,
P.S., Kumar, V., Gahtori, P., Das, A., Chetia, D., Prakash, A. & Mahanta,
J. 2016. Synthesis, characterization and antimalarial activity of hybrid
4-aminoquinoline-1,3,5-triazine derivatives. Arabian Journal of Chemistry 9: S625-S631.
https://doi.org/10.1016/j.arabjc.2011.07.001
Bhat, H.R., Singh, U.P., Thakur, A.,
Kumar Ghosh, S., Gogoi, K., Prakash, A. & Singh, R.K. 2015. Synthesis,
antimalarial activity and molecular docking of hybrid
4-aminoquinoline-1,3,5-triazine derivatives. Experimental Parasitology 157: 59-67.
https://doi.org/10.1016/j.exppara.2015.06.016
Boechat, N., Carvalho, R.C.C.,
Ferreira, M.d.L.G., Coutinho, J.P., Sa, P.M., Seito, L.N., Rosas, E.C.,
Krettli, A.U., Bastos, M.M. & Pinheiro, L.C.S. 2020. Antimalarial and
anti-inflammatory activities of new chloroquine and primaquine hybrids:
Targeting the blockade of malaria parasite transmission. Bioorganic and Medicinal Chemistry 28(24): 115832.
https://doi.org/10.1016/j.bmc.2020.115832
Boudhar, A., Ng, X.W., Loh, C.Y.,
Chia, W.N., Tan, Z.M., Nosten, F., Dymock, B.W. & Tan, K.S.W. 2016.
Overcoming chloroquine resistance in malaria: Design, synthesis and
structure-activity relationships of novel chemoreversal agents. European Journal of Medicinal Chemistry 119(5): 231-249. https://doi.org/10.1016/j.ejmech.2016.04.058
Burgess, S.J., Selzer, A., Kelly,
J.X., Smilkstein, M.J., Riscoe, M.K. & Peyton, D.H. 2006. A
chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. Journal of Medicinal Chemistry 49(18):
5623-5625. https://doi.org/10.1021/jm060399n
Capela, R., Cabal, G.G., Rosenthal,
P.J., Gut, J., Mota, M.M., Moreira, R., Lopes, F. & Prudêncio, M. 2011.
Design and evaluation of primaquine-artemisinin hybrids as a multistage
antimalarial strategy. Antimicrobial
Agents and Chemotherapy 55(10): 4698-4706.
https://doi.org/10.1128/AAC.05133-11
Chauhan, K., Sharma, M., Saxena, J.,
Singh, S.V., Trivedi, P., Srivastava, K., Puri, S.K., Saxena, J.K., Chaturvedi,
V. & Chauhan, P.M.S. 2013. Synthesis and biological evaluation of a new
class of 4-aminoquinoline- rhodanine hybrid as potent anti-infective agents. European Journal of Medicinal Chemistry 62: 693-704. https://doi.org/10.1016/j.ejmech.2013.01.017
Guantai, E. & Chibale, K. 2010.
Chloroquine resistance: Proposed mechanisms and countermeasures. Current Drug Delivery 7(4): 312-323.
https://doi.org/http://dx.doi.org/10.2174/156720110793360577
Chopra, R., Chibale, K. & Singh,
K. 2018. Pyrimidine-chloroquinoline hybrids: Synthesis and antiplasmodial
activity. European Journal of Medicinal
Chemistry 148: 39-53. https://doi.org/10.1016/j.ejmech.2018.02.021
Chopra, R., de Kock, C., Smith, P.,
Chibale, K. & Singh, K. 2015. Ferrocene-pyrimidine conjugates: Synthesis,
electrochemistry, physicochemical properties and antiplasmodial activities. European Journal of Medicinal Chemistry 100: 1-9. https://doi.org/https://doi.org/10.1016/j.ejmech.2015.05.043
da Silva, R.M.R.J., Gandi, M.O.,
Mendonça, J.S., Carvalho, A.S., Coutinho, J.P., Aguiar, A.C.C., Krettli, A.U.
& Boechat, N. 2019. New hybrid trifluoromethylquinolines as antiplasmodial
agents. Bioorganic and Medicinal
Chemistry 27(6): 1002-1008. https://doi.org/10.1016/j.bmc.2019.01.044
Datoo, M.S., Natama, M.H., Somé, A.,
Traoré, O., Rouamba, T., Bellamy, D., Yameogo, P., Valia, D., Tegneri, M.,
Ouedraogo, F., Soma, R., Sawadogo, S., Sorgho, F., Derra, K., Rouamba, E.,
Orindi, B., Ramos Lopez, F., Flaxman, A., Cappuccini, F., Kailath, R., Elias,
S., Mukhopadhyay, E., Noe, A., Cairns, M., Lawrie, A., Roberts, R., Valéa, I.,
Sorgho, H., Williams, N., Glenn, G., Fries, L., Reimer, J., Ewer, K.J.,
Shaligram, U., Hill, A.V.S. & Tinto, H. 2021. Efficacy of a low-dose
candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration
to children in Burkina Faso: A randomized controlled trial. The Lancet 397(10287): 1809-1818.
https://doi.org/10.1016/S0140-6736(21)00943-0
Dondorp, A.M., Yeung, S., White, L.,
Nguon, C., Day, N.P.J., Socheat, D. & Von Seidlein, L. 2010. Artemisinin resistance:
Current status and scenarios for containment. Nature Reviews Microbiology 8(4): 272-280.
https://doi.org/10.1038/nrmicro2331
Egan, T.J., Hunter, R., Kaschula, C.H.,
Marques, H.M., Misplon, A. & Walden, J. 2000. Structure−function
relationships in aminoquinolines: Effect of amino and chloro groups on
Quinoline−Hematin complex formation, inhibition of β-hematin
formation, and antiplasmodial activity. Journal of Medicinal Chemistry 43(2): 283-291. https://doi.org/10.1021/jm990437l
Feng, L.S., Xu, Z., Chang, L., Li,
C., Yan, X.F., Gao, C., Ding, C., Zhao, F., Shi, F. & Wu, X. 2020. Hybrid
molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Medicinal
Research Reviews 40(3): 931-971. https://doi.org/10.1002/med.21643
Feng, T.S., Guantai, E.M., Nell, M.,
Van Rensburg, C.E.J., Ncokazi, K., Egan, T.J., Hoppe, H.C. & Chibale, K.
2011. Effects of highly active novel artemisinin-chloroquinoline hybrid
compounds on β-hematin formation, parasite morphology and endocytosis in Plasmodium falciparum. Biochemical
Pharmacology 82(3): 236-247. https://doi.org/10.1016/j.bcp.2011.04.018
Fermini, B. & Fossa, A.A. 2003.
The impact of drug-induced QT interval prolongation on drug discovery and
development. Nature Reviews Drug
Discovery 2(6): 439-447. https://doi.org/10.1038/nrd1108
Françoise, B.V., Joël, L., Antoine,
B., Caroline, D., Odile, D.C., Jérôme, C., Christophe, L., Anne, R.,
Jean-François, M. & Bernard, M. 2007. Trioxaquines are new antimalarial
agents active on all erythrocytic forms, including gametocytes. Antimicrobial Agents and Chemotherapy 51(4): 1463-1472. https://doi.org/10.1128/AAC.00967-06
Fröhlich, T., Çapcı Karagöz,
A., Reiter, C. & Tsogoeva, S.B. 2016. Artemisinin-derived dimers: Potent
antimalarial and anticancer agents. Journal
of Medicinal Chemistry 59(16): 7360-7388.
https://doi.org/10.1021/acs.jmedchem.5b01380
Gayam, V. & Ravi, S. 2017.
Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. European Journal of Medicinal Chemistry 135: 382-391. https://doi.org/10.1016/j.ejmech.2017.04.063
Hu, Y.Q., Gao, C., Zhang, S., Xu,
L., Xu, Z., Feng, L.S., Wu, X. & Zhao, F. 2017. Quinoline hybrids and their
antiplasmodial and antimalarial activities. European
Journal of Medicinal Chemistry 139: 22-47.
https://doi.org/10.1016/j.ejmech.2017.07.061
Huang, G., Solano, C.M., Melendez,
J., Yu-Alfonzo, S., Boonhok, R., Min, H., Miao, J., Chakrabarti, D. & Yuan,
Y. 2021. Discovery of fast-acting dual-stage antimalarial agents by profiling
pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne
cycloadditions. European Journal of
Medicinal Chemistry 209: 112889.
https://doi.org/10.1016/j.ejmech.2020.112889
Ishmail, F.Z., Melis, D.R., Mbaba,
M. & Smith, G.S. 2021. Diversification of quinoline-triazole scaffolds with
CORMs: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. Journal of Inorganic Biochemistry 215(August 2020): 111328. https://doi.org/10.1016/j.jinorgbio.2020.111328
Ismail, H.M., Barton, V.E.,
Panchana, M., Charoensutthivarakul, S., Biagini, G.A., Ward, S.A. &
O’Neill, P.M. 2016. A click chemistry-based proteomic approach reveals that
1,2,4-trioxolane and artemisinin antimalarials
share a common protein alkylation profile. Angewandte
Chemie (International Ed. in English) 55(22): 6401-6405.
https://doi.org/10.1002/anie.201512062
Joshi, M.C., Wicht, K.J., Taylor,
D., Hunter, R., Smith, P.J. & Egan, T.J. 2013. In vitro antimalarial activity, β-haematin inhibition and
structure-activity relationships in a series of quinoline triazoles. European Journal of Medicinal Chemistry 69: 338-347. https://doi.org/10.1016/j.ejmech.2013.08.046
Joubert, J.P., Smit, F.J., du
Plessis, L., Smith, P.J. & N’Da, D.D. 2014. Synthesis and in vitro biological evaluation of
aminoacridines and artemisinin–acridine hybrids. European Journal of Pharmaceutical Sciences 56: 16-27.
https://doi.org/https://doi.org/10.1016/j.ejps.2014.01.014
Kholiya, R., Khan, S.I., Bahuguna,
A., Tripathi, M. & Rawat, D.S. 2017. N-Piperonyl substitution on
aminoquinoline-pyrimidine hybrids: Effect on the antiplasmodial potency. European Journal of Medicinal Chemistry 131: 126-140. https://doi.org/10.1016/j.ejmech.2017.03.007
Kondaparla, S., Manhas, A., Dola,
V.R., Srivastava, K., Puri, S.K. & Katti, S.B. 2018. Design, synthesis and
antiplasmodial activity of novel imidazole derivatives based on
7-chloro-4-aminoquinoline. Bioorganic
Chemistry 80(March): 204-211. https://doi.org/10.1016/j.bioorg.2018.06.012
Krogstad, D.J., Gluzman, I.Y., Kyle,
D.E., Oduola, A.M., Martin, S.K., Milhous, W.K. & Schlesinger, P.H. 1987.
Efflux of chloroquine from Plasmodium
falciparum: Mechanism of chloroquine resistance. Science 238(4831): 1283-1285. https://doi.org/10.1126/science.3317830
Kumar, D., Khan, S.I., Tekwani,
B.L., Ponnan, P. & Rawat, D.S. 2015. 4-aminoquinoline-pyrimidine hybrids:
Synthesis, antimalarial activity, heme binding and docking studies. European Journal of Medicinal Chemistry 89: 490-502. https://doi.org/10.1016/j.ejmech.2014.10.061
Kumar, S., Saini, A., Gut, J.,
Rosenthal, P.J., Raj, R. & Kumar, V. 2017.
4-aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: Synthesis and
antiplasmodial evaluation. European
Journal of Medicinal Chemistry 138: 993-1001.
https://doi.org/10.1016/j.ejmech.2017.07.041
Kumari, A., Karnatak, M., Singh, D.,
Shankar, R., Jat, J.L., Sharma, S., Yadav, D., Shrivastava, R. & Verma,
V.P. 2019. Current scenario of artemisinin and its analogues for antimalarial
activity. European Journal of Medicinal
Chemistry 163: 804-829. https://doi.org/10.1016/j.ejmech.2018.12.007
Lombard, M.C., N’Da, D.D., Tran Van
Ba, C., Wein, S., Norman, J., Wiesner, L. & Vial, H. 2013. Potent in vivo antimalarial activity and
representative snapshot pharmacokinetic evaluation of artemisinin-quinoline
hybrids. Malaria Journal 12(1): 71.
https://doi.org/10.1186/1475-2875-12-71
Lombard, M.C., N’Da, D.D.,
Breytenbach, J.C., Kolesnikova, N.I., Tran Van Ba, C., Wein, S., Norman, J.,
Denti, P., Vial, H. & Wiesner, L. 2012. Antimalarial and anticancer
activities of artemisinin-quinoline hybrid-dimers and pharmacokinetic
properties in mice. European Journal of
Pharmaceutical Sciences 47(5): 834-841.
https://doi.org/10.1016/j.ejps.2012.09.019
Lombard, M.C., N’Da, D.D.,
Breytenbach, J.C., Smith, P.J. & Lategan, C.A. 2011. Synthesis, in vitro antimalarial and cytotoxicity
of artemisinin- aminoquinoline hybrids. Bioorganic
and Medicinal Chemistry Letters 21(6): 1683-1686.
https://doi.org/10.1016/j.bmcl.2011.01.103
Manohar, S., Tripathi, M. &
Rawat, D.S. 2014. 4-aminoquinoline based molecular hybrids as antimalarials: An
overview. Current Topics in Medicinal
Chemistry 14(14): 1706-1733.
https://doi.org/10.2174/1568026614666140808125728
Marinho, J.A., Martins Guimarães,
D.S., Glanzmann, N., de Almeida Pimentel, G., Karine da Costa Nunes, I.,
Gualberto Pereira, H.M., Navarro, M., de Pilla Varotti, F., David da Silva, A.
& Abramo, C. 2021. In vitro and in vivo antiplasmodial activity of novel
quinoline derivative compounds by molecular hybridization. European Journal of Medicinal Chemistry 215.
https://doi.org/10.1016/j.ejmech.2021.113271
Martin, S.K., Oduola, A.M. &
Milhous, W.K. 1987. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235(4791): 899-901. https://doi.org/10.1126/science.3544220
Martínez, A., Deregnaucourt, C.,
Sinou, V., Latour, C., Roy, D., Schrével, J. & Sánchez-Delgado, R.A. 2017.
Synthesis of an organo-ruthenium aminoquinoline-trioxane hybrid and evaluation
of its activity against Plasmodium
falciparum and its toxicity toward normal mammalian cells. Medicinal Chemistry Research 26(2):
473-483. https://doi.org/10.1007/s00044-016-1769-6
Maurya, S.S., Bahuguna, A., Khan,
S.I., Kumar, D., Kholiya, R. & Rawat, D.S. 2019. N-substituted
aminoquinoline-pyrimidine hybrids: Synthesis, in vitro antimalarial activity evaluation and docking studies. European Journal of Medicinal Chemistry 162: 277-289. https://doi.org/10.1016/j.ejmech.2018.11.021
Maurya, S.S., Khan, S.I., Bahuguna,
A., Kumar, D. & Rawat, D.S. 2017. Synthesis, antimalarial activity, heme
binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine
molecular hybrids. European Journal of
Medicinal Chemistry 129: 175-185. https://doi.org/10.1016/j.ejmech.2017.02.024
Minić, A., Van de Walle, T.,
Van Hecke, K., Combrinck, J., Smith, P.J., Chibale, K. & D’hooghe, M. 2020.
Design and synthesis of novel ferrocene-quinoline conjugates and evaluation of
their electrochemical and antiplasmodial properties. European Journal of Medicinal Chemistry 187: 111963.
https://doi.org/10.1016/j.ejmech.2019.111963
Morphy, R. & Rankovic, Z. 2005.
Designed multiple ligands. An emerging drug discovery paradigm. Journal of Medicinal Chemistry 48(21):
6523-6543. https://doi.org/10.1021/jm058225d
Muregi, F.W. & Ishih, A. 2010.
Next-generation antimalarial drugs: Hybrid molecules as a new strategy in
drug design. Drug Development Research 71(1): 20-32.
https://doi.org/10.1002/ddr.20345
Musonda, C.C., Whitlock, G.A.,
Witty, M.J., Brun, R. & Kaiser, M. 2009. Chloroquine–astemizole hybrids
with potent in vitro and in vivo antiplasmodial activity. Bioorganic & Medicinal Chemistry Letters 19(2): 481-484. https://doi.org/https://doi.org/10.1016/j.bmcl.2008.11.047
Mwande Maguene, G., Lekana-Douki,
J.B., Mouray, E., Bousquet, T., Grellier, P., Pellegrini, S., Toure Ndouo,
F.S., Lebibi, J. & Pélinski, L. 2015. Synthesis and in vitro antiplasmodial activity of ferrocenyl aminoquinoline
derivatives. European Journal of
Medicinal Chemistry 90: 519-525.
https://doi.org/10.1016/j.ejmech.2014.11.065
Nisha, Gut, J., Rosenthal, P.J.
& Kumar, V. 2014. β-amino-alcohol tethered 4-aminoquinoline-isatin
conjugates: Synthesis and antimalarial evaluation. European Journal of Medicinal Chemistry 84: 566-573.
https://doi.org/10.1016/j.ejmech.2014.07.064
Noedl, H., Se, Y., Schaecher, K.,
Smith, B.L., Socheat, D. & Fukuda, M.M. 2008. Evidence of
artemisinin-resistant malaria in Western Cambodia. New England Journal of Medicine 359(24): 2619-2620.
https://doi.org/10.1056/nejmc0805011
O’Neill, P.M., Amewu, R.K., Nixon,
G.L., Bousejra ElGarah, F., Mungthin, M., Chadwick, J., Shone, A.E.,
Vivas, L., Lander, H., Barton, V., Muangnoicharoen, S., Bray, P.G., Davies, J.,
Park, B.K., Wittlin, S., Brun, R., Preschel, M., Zhang, K. & Ward, S.A.
2010. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development
candidate (RKA 182) with superior properties to the semisynthetic
artemisinins. Angewandte Chemie
International Edition 49(33): 5693-5697.
https://doi.org/https://doi.org/10.1002/anie.201001026
Opsenica, I.M., Verbić, T.,
Tot, M., Sciotti, R.J., Pybus, B.S., Djurković-Djaković, O.,
Slavić, K. & Šolaja, B.A. 2015. Investigation into novel thiophene-
and furan-based 4-amino-7-chloroquinolines afforded antimalarials that cure
mice. Bioorganic and Medicinal Chemistry 23(9): 2176-2186. https://doi.org/10.1016/j.bmc.2015.02.061
Pandey, S., Agarwal, P., Srivastava,
K., RajaKumar, S., Puri, S.K., Verma, P., Saxena, J.K., Sharma, A., Lal, J.
& Chauhan, P.M.S. 2013. Synthesis and bioevaluation of novel
4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. European Journal of Medicinal Chemistry 66: 69-81. https://doi.org/10.1016/j.ejmech.2013.05.023
Pérez, B.C., Teixeira, C.,
Figueiras, M., Gut, J., Rosenthal, P.J., Gomes, J.R.B. & Gomes, P. 2012.
Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino
acids: Towards the development of potential dual action antimalarials. European Journal of Medicinal Chemistry 54: 887-899. https://doi.org/10.1016/j.ejmech.2012.05.022
Posner, G.H., Wang, D., Cumming,
J.N., Oh, C.H., French, A.N., Bodley, A.L. & Shapiro, T.A. 1995. Further
evidence supporting the importance of and the restrictions on a carbon-centered radical for high antimalarial
activity of 1,2,4-trioxanes like artemisinin. Journal of Medicinal Chemistry 38(13): 2273-2275.
https://doi.org/10.1021/jm00013a001
Pretorius, S.I., Breytenbach, W.J.,
De Kock, C., Smith, P.J. & N’Da, D.D. 2013. Synthesis, characterization and
antimalarial activity of quinoline-pyrimidine hybrids. Bioorganic and Medicinal Chemistry 21(1): 269-277.
https://doi.org/10.1016/j.bmc.2012.10.019
Prisinzano, T.E. 2006. Medicinal
chemistry: A molecular and biochemical approach. Journal of Medicinal Chemistry 49(11): 3428.
https://doi.org/10.1021/jm068018t
Raj, R., Singh, P., Singh, P., Gut,
J., Rosenthal, P.J. & Kumar, V. 2013. Azide-alkyne cycloaddition en route
to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: Synthesis and
antimalarial evaluation. European Journal
of Medicinal Chemistry 62: 590-596.
https://doi.org/10.1016/j.ejmech.2013.01.032
Rani, A., Sharma, A., Legac, J.,
Rosenthal, P.J., Singh, P. & Kumar, V. 2021. A trio of
quinoline-isoniazid-phthalimide with promising antiplasmodial potential:
Synthesis, in-vitro evaluation and
heme-polymerization inhibition studies. Bioorganic
and Medicinal Chemistry 39(December 2020): 116159.
https://doi.org/10.1016/j.bmc.2021.116159
Rani, A., Kumar, S., Legac, J.,
Adeniyi, A.A., Awolade, P., Singh, P., Rosenthal, P.J. & Kumar, V. 2020.
Design, synthesis, heme binding and density functional theory studies of
isoindoline-dione-4-aminoquinolines as potential antiplasmodials. Future Medicinal Chemistry 12(3):
193-205. https://doi.org/10.4155/fmc-2019-0260
Rani, A., Legac, J., Rosenthal, P.J.
& Kumar, V. 2019. Substituted 1,3-dioxoisoindoline-4-aminoquinolines
coupled via amide perangkais: Synthesis, antiplasmodial and cytotoxic
evaluation. Bioorganic Chemistry 88(February): 102912. https://doi.org/10.1016/j.bioorg.2019.04.006
Rathore, D., Jani, D., Nagarkatti,
R. & Kumar, S. 2006. Heme detoxification and antimalarial drugs - Known
mechanisms and future prospects. Drug
Discovery Today: Therapeutic Strategies 3(2): 153-158.
https://doi.org/10.1016/j.ddstr.2006.06.003
Reddy, P.L., Khan, S.I., Ponnan, P.,
Tripathi, M. & Rawat, D.S. 2017. Design, synthesis and evaluation of
4-aminoquinoline-purine hybrids as potential antiplasmodial agents. European Journal of Medicinal Chemistry 126: 675-686. https://doi.org/10.1016/j.ejmech.2016.11.057
Relitti, N., Federico, S., Pozzetti,
L., Butini, S., Lamponi, S., Taramelli, D., D’Alessandro, S., Martin, R.E.,
Shafik, S.H., Summers, R.L., Babij, S.K., Habluetzel, A., Tapanelli, S.,
Caldelari, R., Gemma, S. & Campiani, G. 2021. Synthesis and biological
evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine
resistance transporter (PfCRT) inhibitory activity. European Journal of Medicinal Chemistry 215: 113227.
https://doi.org/10.1016/j.ejmech.2021.113227
Ribeiro, C.J.A., Kumar, S.P., Gut,
J., Gonçalves, L.M., Rosenthal, P.J., Moreira, R. & Santos, M.M.M. 2013.
Squaric acid/4-aminoquinoline conjugates: Novel potent antiplasmodial agents. European Journal of Medicinal Chemistry 69: 365-372. https://doi.org/10.1016/j.ejmech.2013.08.037
Rojas Ruiz, F.A., García-Sánchez,
R.N., Estupiñan, S.V., Gómez-Barrio, A., Torres Amado, D.F., Pérez-Solórzano,
B.M., Nogal-Ruiz, J.J., Martínez-Fernández, A.R. & Kouznetsov, V.V. 2011.
Synthesis and antimalarial activity of new heterocyclic hybrids based on
chloroquine and thiazolidinone scaffolds. Bioorganic
and Medicinal Chemistry 19(15): 4562-4573.
https://doi.org/10.1016/j.bmc.2011.06.025
Sahu, S., Ghosh, S.K., Kalita, J.,
Dutta, M. & Bhat, H.R. 2016. Design, synthesis and antimalarial screening
of some hybrid 4-aminoquinoline-triazine derivatives against pf-DHFR-TS. Experimental Parasitology 163: 38-45.
https://doi.org/10.1016/j.exppara.2016.01.010
Saini, A., Kumar, S., Raj, R.,
Chowdhary, S., Gendrot, M., Mosnier, J., Fonta, I., Pradines, B., & Kumar,
V. 2021. Synthesis and antiplasmodial evaluation of 1H-1,2,3-triazole grafted
4-aminoquinoline-benzoxaborole hybrids and benzoxaborole analogues. Bioorganic Chemistry 109(September
2020): 104733. https://doi.org/10.1016/j.bioorg.2021.104733
Sashidhara, K.V., Kumar, M.,
Modukuri, R.K., Srivastava, R.K., Soni, A., Srivastava, K., Singh, S.V.,
Saxena, J.K., Gauniyal, H.M. & Puri, S.K. 2012. Antiplasmodial activity of
novel keto-enamine chalcone-chloroquine based hybrid pharmacophores. Bioorganic and Medicinal Chemistry 20(9): 2971-2981. https://doi.org/10.1016/j.bmc.2012.03.011
Shalini, L.J., Adeniyi, A.A.,
Kisten, P., Rosenthal, P.J., Singh, P. & Kumar, V. 2020. Functionalized
naphthalimide-4-aminoquinoline conjugates as promising antiplasmodials, with
mechanistic insights. ACS Medicinal
Chemistry Letters 11(2): 154-161.
https://doi.org/10.1021/acsmedchemlett.9b00521
Simon, F. 2006. The trouble with
making combination drugs. Nature Reviews
Drug Discovery 5(11): 881-882. https://doi.org/10.1038/nrd2188
Singh, K., Kaur, H., Chibale, K.,
Balzarini, J., Little, S. & Bharatam, P.V. 2012. 2-Aminopyrimidine based
4-aminoquinoline anti-plasmodial agents. Synthesis, biological activity,
structure-activity relationship and mode of action studies. European Journal of Medicinal Chemistry 52(January): 82-97. https://doi.org/10.1016/j.ejmech.2012.03.007
Sonawane, D.P., Persico, M.,
Corbett, Y., Chianese, G., Di Dato, A., Fattorusso, C., Taglialatela-Scafati,
O., Taramelli, D., Trombini, C., Dhavale, D.D., Quintavalla, A., &
Lombardo, M. 2015. New antimalarial 3-methoxy-1,2-dioxanes: Optimization of
cellular pharmacokinetics and pharmacodynamics properties by incorporation of
amino and N-heterocyclic moieties at C4. RSC
Advances 5(89): 72995-73010. https://doi.org/10.1039/c5ra10785g
Taleli, L., De Kock, C., Smith,
P.J., Pelly, S.C., Blackie, M.A.L. & Van Otterlo, W.A.L. 2015. In vitro antiplasmodial activity of triazole-linked
chloroquinoline derivatives synthesized from
7-chloro-N-(prop-2-yn-1-yl)quinolin-4-amine. Bioorganic and Medicinal Chemistry 23(15): 4163-4171A.
https://doi.org/10.1016/j.bmc.2015.06.044
Thelingwani, R., Leandersson, C.,
Bonn, B., Smith, P., Chibale, K. & Masimirembwa, C. 2016. Characterization
of artemisinin–chloroquinoline hybrids for potential metabolic liabilities. Xenobiotica 46(3): 234-240.
https://doi.org/10.3109/00498254.2015.1070975
Thelingwani, R., Bonn, B., Chibale,
K. & Masimirembwa, C. 2014. Physicochemical and drug metabolism
characterization of a series of 4-aminoquinoline-3-hydroxypyridin-4-one hybrid
molecules with antimalarial activity. Expert
Opinion on Drug Metabolism & Toxicology 10(10): 1313-1324.
https://doi.org/10.1517/17425255.2014.954547
Van de Walle, T., Boone, M., Van
Puyvelde, J., Combrinck, J., Smith, P.J., Chibale, K., Mangelinckx, S. &
D’hooghe, M. 2020. Synthesis and biological evaluation of novel
quinoline-piperidine scaffolds as antiplasmodium agents. European Journal of Medicinal Chemistry 198: 112330.
https://doi.org/10.1016/j.ejmech.2020.112330
van Schalkwyk, D.A. & Egan, T.J.
2006. Quinoline-resistance reversing agents for the malaria parasite Plasmodium falciparum. Drug Resistance Updates 9(4): 211-226.
https://doi.org/https://doi.org/10.1016/j.drup.2006.09.002
Vangapandu, S., Sachdeva, S., Jain,
M., Singh, S., Singh, P.P., Kaul, C.L. & Jain, R. 2003. 8-quinolinamines
and their pro prodrug conjugates as potent blood-Schizontocidal antimalarial
agents. Bioorganic & Medicinal
Chemistry 11(21): 4557-4568.
https://doi.org/https://doi.org/10.1016/j.bmc.2003.07.003
Walsh, J.J. & Bell, A. 2009.
Hybrid drugs for malaria. Current
Pharmaceutical Design 15(25): 2970-2985. https://doi.org/http://dx.doi.org/10.2174/138161209789058183
Walsh, J.J., Coughlan, D., Heneghan,
N., Gaynor, C. & Bell, A. 2007. A novel artemisinin–quinine hybrid with
potent antimalarial activity. Bioorganic
& Medicinal Chemistry Letters 17(13): 3599-3602.
https://doi.org/https://doi.org/10.1016/j.bmcl.2007.04.054
Wang, N., Wicht, K.J., Shaban, E.,
Ngoc, T.A., Wang, M.Q., Hayashi, I., Hossain, M.I., Takemasa, Y., Kaiser, M.,
El Tantawy El Sayed, I., Egan, T.J. & Inokuchi, T. 2014. Synthesis and
evaluation of artesunate-indoloquinoline hybrids as antimalarial drug
candidates. MedChemComm 5(7):
927-931. https://doi.org/10.1039/c4md00091a
White, N.J. 2007. Cardiotoxicity of
antimalarial drugs. The Lancet Infectious
Diseases 7(8): 549-558. https://doi.org/10.1016/S1473-3099(07)70187-1
WHO. 2013. The cardiotoxicity of
antimalarials. Archives de Pediatrie Vol. 20. https://doi.org/10.1016/S0929-693X(13)71340-X
Zhu, F., Guiguemde, W.A., Sigal,
M.S. & Wilson, E.B. 2011. Analogs for antimalarial activity. J. Med. Chem. 54(20): 7084-7093. https://doi.org/10.1021/jm200636z.Synthesis
*Pengarang
untuk surat-menyurat; email: drizz@ukm.edu.my
|