Sains Malaysiana 51(10)(2022):
3481-3493
http://doi.org/10.17576/jsm-2022-5110-29
Pencirian Jangkitan Plasmodium berghei NK65 pada Mencit ICR sebagai Model Jangkitan Malaria Teruk
(Characterisation of Plasmodium berghei NK65 Infection in ICR Mice as a Severe Malarial Infection Model)
AMATUL HAMIZAH ALI1, WAN ROZIANOOR
MOHD HASSAN2, DHIANA EFANI DAHARI3, NOOR EMBI3,
HASIDAH MOHD SIDEK3, RUSLIZA BASIR4, HANI KARTINI AGUSTAR5 & JALIFAH LATIP1,*
1Jabatan Sains Kimia, Fakulti Sains dan
Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Fakulti Sains Gunaan, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
3Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
4Unit Farmakologi, Jabatan Anatomi Manusia,
Fakulti Perubatan dan Sains Kesihatan, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
5Jabatan Sains Bumi dan Alam Sekitar, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan:
13 Mac 2022/Diterima: 4 Julai 2022
Abstrak
Malaria
teruk atau ‘severe’ kebiasaannya disebabkan oleh jangkitan Plasmodium
falciparum. Jangkitan Plasmodium falciparum pada manusia boleh
menyebabkan kerosakan organ, anemia teruk, komplikasi serius, koma dan
kematian. Bagi tujuan memahami patogenesis malaria teruk, model haiwan
digunakan dalam kajian kali ini bagi mengenal pasti sama ada gabungan
hos-parasit daripada mencit ICR dengan Plasmodium berghei NK65 boleh
menyebabkan jangkitan malaria teruk pada hos. Pencirian jangkitan P. berghei ANKA pernah dilakukan sebelum ini terhadap mencit ICR; walau bagaimanapun,
pencirian jangkitan P. berghei NK65 secara terperinci terhadap mencit
ICR dalam kajian ini adalah pertama kali dilaporkan. Inokulasi sel darah merah
(RBC) terjangkit-P. berghei NK65 (2 ´ 107 parasit RBC (pRBC)/mL) dilakukan terhadap mencit ICR
dengan suntikan secara intraperitoneum. Pemantauan perubahan ciri fizikal
seperti berat, suhu mencit, kematian mencit, pos mortem, histologi dan aras
sitokin inflamasi yang terhasil selepas jangkitan direkod untuk analisis.
Strain P. berghei NK65 menghasilkan jangkitan tahap teruk terhadap
mencit ICR iaitu paras parasitemia melebihi 50% pada hari ke-10 selepas
jangkitan diikuti kematian. Analisis histopatologi menunjukkan jangkitan ini
menyebabkan perubahan pada tisu serebrum, perlekatan leukosit pada endotelium dan
pensekuesteran pRBC dalam salur darah serebrum serta pendarahan intravaskular.
Selepas jangkitan, pensekuesteran pRBC dan pengumpulan pigmen malaria turut
dilihat pada organ utama mencit. Tambahan lagi, edema pulmonari, pembentukan
membran hialin pada peparu dan pendarahan kortikal pada ginjal dilihat pada
mencit terjangkit. Sitokin proinflamasi (TNF-α, IFN-γ, dan IL-18) dan
sitokin antiinflamasi (IL-10 dan IL-4) juga meningkat dalam serum mencit
terjangkit. Secara rumusannya, model jangkitan mencit ICR-P. berghei NK65 yang digunakan dalam kajian ini menunjukkan ciri-ciri jangkitan malaria
teruk. Hasil daripada kajian ini boleh digunakan sebagai asas untuk memahami
patogenesis bagi malaria teruk pada manusia dan model jangkitan malaria haiwan
pada masa akan datang.
Kata kunci: Histopatologi; malaria; mencit ICR; model jangkitan
haiwan; Plasmodium berghei NK65; sitokin inflamasi
Abstract
Severe malaria is commonly caused by Plasmodium
falciparum infection. Plasmodium falciparum infection in human can
cause organ damage, severe anaemia, serious complications, coma and death. For
the purpose of understanding the pathogenesis of severe malaria, an animal
model was used in this study to examine whether the combination of
host-parasite from ICR mice with Plasmodium berghei NK65 caused severe
malaria infection in the host. Characterisation of P. berghei ANKA
infection has been performed previously on ICR mice, however, the detailed
histopathological view of P. berghei NK65 infection on ICR mice in this
study was first reported. Inoculation of the P. berghei NK65-infected
red blood cells (RBCs) (2×107 parasitised RBCs (pRBC)/mL) were
performed on ICR mice by intraperitoneal injection. Changes in physical
characteristics such as body weight, temperature, mortality, post-mortem,
histopathology and levels of inflammatory cytokines resulting after infection
were recorded for analysis. The P. berghei NK65 strain produced a severe
level of infection in ICR mice i.e., the degree of parasitaemia exceeded 50% on
day-10 after infection followed by death. Histopathological analysis showed
that the infection caused changes in cerebral tissue, accumulation of
leukocytes to the endothelium and sequestration of pRBCs in the cerebral blood
vessels as well as intravascular haemorrhage. After infection, pRBC
sequestration and accumulation of malaria pigments were also observed in the
major organs. In addition, pulmonary oedema, hyaline membrane formation in the
lungs and cortical haemorrhage in the kidneys were seen in infected mice. Proinflammatory
cytokines (TNF-α, IFN-γ, and IL-18) and anti-inflammatory cytokines
(IL-10 and IL-4) were also increased in the serum of infected mice. In summary,
the ICR mice-P. berghei NK65 infection model used in this study showed
characteristics of severe malaria infection in human. The insights from this
study can be used as a basis for understanding the pathogenesis of severe
malaria in human and models of rodent malarial infection in the future.
Keywords: Animal infection model; histopathology; ICR
mice; inflammatory cytokines; malaria; Plasmodium berghei NK65
Rujukan
Aizuddin,
N.N.F., Ganesan, N., Ng, W.C., Ali, A.H., Ibrahim, I., Basir, R., Embi, N.
& Hasidah, M.S. 2020. GSK3β: A plausible molecular target in the
cytokine-modulating effect of exogenous insulin in a murine model of malarial
infection. Tropical Biomedicine 37(4): 1105-1116.
Amal, R.N.,
Noor Hayati, M.I. & Chan, B.T.E. 2006. A retrospective study on malaria
cases admitted to Hospital Universiti Kebangsaan Malaysia (HUKM). Malaysian
Journal of Medicine and Health Sciences 2: 41-49.
Angulo, I.
& Fresno, M. 2002. Cytokines in the pathogenesis of and protection against
malaria. Clinical and Diagnostic Laboratory Immunology 9(6): 1145-1152.
Artavanis‐Tsakonas,
K., Tongren, J.E. & Riley, E.M. 2003. The war between the malaria parasite
and the immune system: immunity, immunoregulation and immunopathology. Clinical
& Experimental Immunology 133(2): 145-152.
Bagot, S.,
Campino, S., Penha-Gonçalves, C., Pied, S., Cazenave, P.A. & Holmberg, D.
2002. Identification of two cerebral malaria resistance loci using an inbred
wild-derived mouse strain. Proceedings of the National Academy of Sciences 99(15): 9919-9923.
Basir, R.,
Rahiman, S.F., Hasballah, K., Chong, W.C., Talib, H., Yam, M.F., Jabbarzare,
M., Tie, T.H., Othman, F., Moklas, M.A.M. & Abdullah, W.O. 2012. Plasmodium
berghei ANKA infection in ICR mice as a model of cerebral malaria. Iranian
Journal of Parasitology 7(4): 62.
Baptista,
F.G., Pamplona, A., Pena, A.C., Mota, M.M., Pied, S. & Vigário, A.M. 2010.
Accumulation of Plasmodium berghei-infected red blood cells in the brain
is crucial for the development of cerebral malaria in mice. Infection and Immunity 78(9): 4033-4039.
Craig,
A.G., Grau, G.E., Janse, C., Kazura, J.W., Milner, D., Barnwell, J.W., Turner,
G. & Langhorne, J. 2012. The role of animal models for research on severe
malaria. PLoS Pathogens 8(2): e1002401.
De Souza,
J.B. & Riley, E.M. 2002. Cerebral malaria: The contribution of studies in
animal models to our understanding of immunopathogenesis. Microbes and
Infection 4(3): 291-300.
Dian, N.D., Mohd Salleh,
A.F., Rahim, M.A.F.A., Munajat, M.B., Abd Manap, S.N.A., Ghazali, N., Hassan, N.W.
& Idris, Z.M. 2021. Malaria cases in a tertiary hospital in Kuala Lumpur,
Malaysia: A 16-Year (2005-2020) retrospective review. Tropical Medicine and
Infectious Disease 6: 177.
Druilhe,
P., Hagan, P. & Rook, G.A. 2002. The importance of models of infection in
the study of disease resistance. Trends in Microbiology 10(10): s38-s46.
Egan, T.J.
2002. Physico-chemical aspects of hemozoin (malaria pigment) structure and
formation. Journal of Inorganic Biochemistry 91(1): 19-26.
Ghali, J.K.
2009. Anemia and heart failure. Current Opinion in Cardiology 24(2):
172-178.
Gimenez,
F., de Lagerie, S.B., Fernandez, C., Pino, P. & Mazier, D. 2003. Tumor
necrosis factor α in the pathogenesis of cerebral malaria. Cellular and
Molecular Life Sciences 60(8): 1623-1635.
Hart, B.L.
1988. Biological basis of the behavior of sick animals. Neuroscience &
Biobehavioral Reviews 12(2): 123-137.
Hunt, N.H.,
Golenser, J., Chan-Ling, T., Parekh, S., Rae, C., Potter, S., Medana, I.M.,
Miu, J. & Ball, H.J. 2006. Immunopathogenesis of cerebral malaria. International
Journal for Parasitology 36(5): 569-582.
Lacerda-Queiroz,
N., Lima, O.C.O., Carneiro, C.M., Vilela, M.C., Teixeira, A.L.,
Teixeira-Carvalho, A., Araújo, M.S.S., Martins-Filho, O.A., Braga, É.M. &
Carvalho-Tavares, J. 2011. Plasmodium berghei NK65 induces cerebral
leukocyte recruitment in vivo: An intravital microscopic study. Acta
Tropica 120(1): 31-39.
Lai, M.Y.,
Rafieqin, N., Lee, P.L., Rawa, A., Dzul, S., Yahaya, N., Abdullah, F.H.,
Othman, N., Jelip, J., Ooi, C.H. & Ibrahim, J. 2021. High incidence of Plasmodium
knowlesi malaria compared to other human malaria species in several
hospitals in Malaysia. Tropical Biomedicine 38(3): 248-253.
Li, C.,
Seixas, E. & Langhorne, J. 2001. Rodent malarias: The mouse as a model for
understanding immune responses and pathology induced by the erythrocytic stages
of the parasite. Medical Microbiology and Immunology 189(3): 115-126.
Mackintosh,
C.L., Beeson, J.G. & Marsh, K. 2004. Clinical features and pathogenesis of
severe malaria. Trends in Parasitology 20(12): 597-603.
Menendez,
C., Fleming, A.F. & Alonso, P.L. 2000. Malaria-related anaemia. Parasitology
Today 16(11): 469-476.
Miller,
L.H., Baruch, D.I., Marsh, K. & Doumbo, O.K. 2002. The pathogenic basis of
malaria. Nature 415(6872): 673-679.
Nagamine,
Y., Hayano, M., Kashiwamura, S.I., Okamura, H., Nakanishi, K., Krudsod, S.,
Wilairatana, P., Looareesuwan, S. & Kojima, S. 2003. Involvement of
interleukin-18 in severe Plasmodium falciparum malaria. Transactions
of the Royal Society of Tropical Medicine and Hygiene 97(2): 236-241.
Nayak,
K.C., Kumar, S., Gupta, B.K., Kumar, S., Gupta, A., Prakash, P. & Kochar,
D.K. 2014. Clinical and histopathological profile of acute renal failure caused
by falciparum and vivax monoinfection: An observational study
from Bikaner, northwest zone of Rajasthan, India. Journal of Vector Borne
Diseases 51(1): 40.
Niikura,
M., Inoue, S.I. & Kobayashi, F. 2011. Role of interleukin-10 in malaria:
Focusing on coinfection with lethal and nonlethal murine malaria parasites. BioMed
Research International 2011: 383962.
Nimir,
A.R., Isa, N.H.M., Chan, B.T.E., Ghauth, I.M., Salleh, F.M. & Rahman, R.A.
2006. Severity of malaria cases reported in urban and rural hospitals in
Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health 37(5): 831.
Pathak,
V.A. & Ghosh, K. 2016. Erythropoiesis in malaria infections and factors
modifying the erythropoietic response. Anemia 2016: 9310905.
Perkins,
D.J., Were, T., Davenport, G.C., Kempaiah, P., Hittner, J.B. & Ong'echa,
J.M. 2011. Severe malarial anemia: Innate immunity and pathogenesis. International
Journal of Biological Sciences 7(9): 1427.
Rahim,
M.A.F.A., Munajat, M.B. & Idris, Z.M. 2020. Malaria distribution and
performance of malaria diagnostic methods in Malaysia (1980-2019): A systematic
review. Malaria Journal 19(1): 1-12.
Rivera, N.,
Romero, S.E., Menchaca, Á., Zepeda, A., García, L.E., Salas, G., Romero, L.
& Malagón, F. 2013. Blackwater fever like in murine malaria. Parasitology
Research 112(3): 1021-1029.
Sexton,
A.C., Good, R.T., Hansen, D.S., Ombrain, M.C.D., Buckingham, L., Simpson, K.
& Schofield, L. 2004. Transcriptional profiling reveals suppressed
erythropoiesis, up-regulated glycolysis, and interferon-associated responses in
murine malaria. Journal of Infectious Diseases 189(7): 1245-1256.
Sowunmi,
A., Gbotosho, G.O., Adedeji, A.A., Fateye, B.A., Sabitu, M.F., Happi, C.T.
& Fehintola, F.A. 2007. Effects of acute Plasmodium falciparum malaria on body weight in children in an endemic area. Parasitology Research 101(2): 343-349.
Stoute,
J.A., Odindo, A.O., Owuor, B.O., Mibei, E.K., Opollo, M.O. & Waitumbi, J.N.
2003. Loss of red blood cell–complement regulatory proteins and increased
levels of circulating immune complexes are associated with severe malarial
anemia. The Journal of Infectious Diseases 187(3): 522-525.
Sullivan,
A.D., Ittarat, I. & Meshnick, S.R. 1996. Patterns of haemozoin accumulation
in tissue. Parasitology 112(3): 285-294.
Urban, B.C.
& Roberts, D.J. 2002. Malaria, monocytes, macrophages and myeloid dendritic
cells: Sticking of infected erythrocytes switches off host cells. Current
Opinion in Immunology 14(4): 458-465.
Urban,
B.C., Hien, T.T., Day, N.P., Phu, N.H., Roberts, R., Pongponratn, E., Jones,
M., Mai, N.T., Bethell, D., Turner, G.D. & Ferguson, D. 2005. Fatal Plasmodium
falciparum malaria causes specific patterns of splenic architectural
disorganization. Infection and Immunity 73(4): 1986-1994.
Van den
Steen, P.E., Deroost, K., Deckers, J., Van Herck, E., Struyf, S. &
Opdenakker, G., 2013. Pathogenesis of malaria-associated acute respiratory
distress syndrome. Trends in Parasitology 29(7): 346-358.
World Health Organization 2021. Geneva:
World Malaria Report. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021. Accessed on 1 March 2022.
World
Health Organization. 2000. Severe falciparum malaria. Transactions of
the Royal Society of Tropical Medicine and Hygiene 94: 1-90.
Yoshimoto,
T., Takahama, Y., Wang, C.R., Yoneto, T., Waki, S. & Nariuchi, H. 1998. A
pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium
berghei NK65 infection. The Journal of Immunology 160(11):
5500-5505.
*Pengarang
untuk surat-menyurat; email: jalifah@ukm.edu.my
|