Sains Malaysiana 51(1)(2022): 137-147
http://doi.org/10.17576/jsm-2022-5101-11
Catalytic Degradation of
Chlorinated Lignin in Pulp Bleaching Wastewater over Immobilized Laccase
(Degradasi Katalitik Lignin Berklorin dalam Air Buangan Pelunturan Pulpa pada Lakase Pegun)
XUE-FEI ZHOU1,2,3*
1Henan Key Laboratory of Industrial Microbial Resources
and Fermentation Technology, Nanyang Institute of Technology, 473000 Nanyang,
China
2Fujian Provincial Key Lab of Coastal Basin
Environment, Fujian Polytechnic Normal University, Fujian Province University,
350300 Fuzhou, China
3Faculty of Chemical Engineering, Kunming
University of Science and Technology, 650500 Kunming, China
Diserahkan: 9 Januari 2021/Diterima:
22 April 2021
ABSTRACT
The
aim of this study was to use molecular sieves (NaY,
MCM-48, SSZ-13) and graphene oxide (GO) as
supports to immobilize laccase to increase its activity and stability. A
series of characterization of immobilized laccases against kinetic parameter
and stability were carried out, and it was showed that the GO-immobilized
laccase (Lac/GO) was better than molecular sieve-immobilized laccases (Lac/NaY, Lac/MCM, Lac/SSZ) in terms of activity and stability
test using ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid)) as substrate. The impacts of enzymatic catalysis on degradation of
chlorinated lignin from pulp bleaching wastewater were studied through the
structural characterization with 31P-NMR. Lac/GO was able to perform
the most extensive oxidation of the chlorinated lignin, as demonstrated by the
increase of carboxyl groups and the decrease of aliphatic hydroxyl groups.
Noteworthy, significant degradation of condensed lignin substructures occurred
during Lac/GO catalyzed oxidation of chlorinated lignin was observed, while the
content of phenolic hydroxyl groups of chlorinated lignin substantially increased due
to the cleavage of β-O-4
bonds compared to molecular sieve-immobilized laccases. It was also proved that
catalytic degradation using Lac/GO as a biocatalyst is the effective method to
reduce pollution load of pulp bleaching wastewater. The maximum degradation of
chlorinated lignin in pulp bleaching wastewater was achieved with the degradation
rate of chlorinated lignin of 88.6% at 5.0 g/L Lac/GO dose, 50 °C, 4 h, pH 5.0.
The removal of COD, TOC, and colour was 86.2, 85.8 and 92.2%, respectively.
Keywords: Biocatalysis; chlorinated lignin; degradation; laccase;
pulp bleaching wastewater
ABSTRAK
Tujuan kajian ini adalah untuk menggunakan saringan molekul (NaY, MCM-48, SSZ-13) dan grafin teroksida (GO) sebagai sokongan terhadap lakase pegun untuk meningkatkan aktiviti dan kestabilan. Beberapa pencirian kepada lakase pegun terhadap parameter kinetik dan kestabilan telah dijalankan dan keputusan pencirian menunjukkan bahawa GO - lakase pegun (Lac/GO) adalah lebih baik jika dibandingkan dengan saringan molekul - lakase pegun (Lac/NaY, Lac/MCM, Lac/SSZ) dari segi ujian aktiviti dan kestabilan menggunakan ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-asid sulfonik)) sebagai substrat. Kesan daripada pemangkinan enzim pada degradasi lignin berklorin daripada air buangan pelunturan pulpa telah dikaji melalui pencirian struktur menggunakan 31P-NMR.
Lac/GO dapat membuat proses pengoksidaan yang paling ekstensif untuk lignin berklorin, seperti yang ditunjukkan daripada peningkatan kumpulan karboksil dan pengurangan kumpulan hidroksil alifatik. Degradasi bererti daripada substruktur lignin mampat telah berlaku ketika pemangkinan pengoksidaan Lac/GO daripada lignin berklorin telah diperhatikan, manakala kandungan kumpulan hidroksil fenol daripada lignin berklorin telah meningkat secara mendadak disebabkan pembelahan ikatan β-O-4 jika dibandingkan dengan penggunaan saringan molekul - lakase pegun. Kajian ini juga membuktikan bahawa degradasi pemangkinan menggunakan Lac/GO sebagai katalisis biopemangkin merupakan kaedah yang berkesan untuk menurunkan pencemaran yang disebabkan daripada air buangan pelunturan pulpa. Degradasi maksimum lignin berklorin dalam air buangan pelunturan pulpa telah dicapai dengan kadar degradasi lignin berklorin pada 88.6% pada dos 5.0 g/L Lac/GO, 50 °C, 4 jam,
pH 5.0. Penyingkiran COD, TOC dan warna masing-masing adalah 86.2,
85.8 dan 92.2%.
Kata kunci:
Air buangan pelunturan pulpa; biopemangkin; degradasi; lakase; lignin berklorin
RUJUKAN
Author, kindly assist to provide details for the following references.
Thank you. Oliveira et al. 2009, Singh & Gupta 2020.
Abedinzadeh, N., Shariat,
M., Monavari, S.M. & Pendashteh,
A. 2018. Evaluation of color and COD removal by Fenton from biologically (SBR)
pre-treated pulp and paper wastewater. Process
Safety and Environmental Protection 116: 82-91.
Afreen, S., Idrees, D., Khera,
R., Amir, M., Hassan, M.I. & Mishra, S. 2019. Investigation of the role of
central metal ion of Cyathus bullerilaccase
1 using guanidinium chloride-induced denaturation. International Journal of Biological Macromolecules 132: 994-1000.
Aggarwal, S., Chakravarty, A. & Ikram, S. 2020. A
comprehensive review on incredible renewable carriers as promising platforms
for enzyme immobilization & thereof strategies. International Journal of Biological Macromolecules 167: 962-986.
APHA. 2017. Standard Methods for the Examination of
Water and Wastewater. American Public Health Association (APHA).
Asgher,
M., Wahab, A., Bilal, M. & Iqbal, H.M.N. 2018. Delignification of
lignocellulose biomasses by algnate-chitosan
immobilized laccase produced from Trametes versicolor IBL-04. Waste and Biomass Valorization 9(11): 2071-2079.
Balakshin, M. & Capanema, E. 2015. On the quantification of lignin hydroxyl groups with P-31
and C-13 NMR spectroscopy. Journal of
Wood Chemistry and Technology 35(3): 220-237.
Bari,
E., Daniel,
G., Yilgor, N., Kim,
J.S., Tajick-Ghanbary, M.A., Singh,
A.P. & Ribera,
J. 2020. Comparison
of the decay behavior of two white-rot fungi in relation to wood type and
exposure conditions. Microorganisms 8(12): 1931.
Buntic, A.V., Milic, M.D., Antonovic, D.G., Siler-Marinkovic,
S. & Dimitrijevic-Brankovic,
S.I. 2019. Implementation of integrated adsorption
and biological process in wastewater treatment for permanent dye removal and
its subsequent decontamination. Desalination
and Water Treatment 169: 372-382.
Chaparro, T.R. & Rueda-Bayona, J.G. 2020. Ecotoxicity and genetic toxicity data from a
pulp mill bleaching effluent treated with anaerobic digestion and advanced
oxidation process (AOP). Data in Brief 29: 105141.
Dube, M.G. & MacLatchy, D.L. 2000. Endocrine responses of Fundulus heteroclitus to effluent from a bleached-kraft pulp mill before
and after installation of reverse osmosis treatment of a waste stream. Environmental Toxicology and Chemistry 19(11): 2788-2796.
Faleva, A.V., Kozhevnikov, A.Y., Pokryshkin, S.A., Falev, D.I., Shestakov, S.L. & Popova, J.A. 2020. Structural characteristics of different softwood lignins according to 1D and 2D NMR spectroscopy. Journal of Wood Chemistry and Technology 40(3): 178-189.
Fernandez-Rodriguez, J., Erdocia, X., Sanchez, C., Alriols, M.G. & Labidi, J. 2017. Lignin depolymerization for phenolic monomers production
by sustainable processes. Journal of
Energy Chemistry 26(4): 622-631.
Haq, I., Mazumder, P. & Kalamdhad, A.S. 2020. Recent advances in removal of lignin from paper industry
wastewater and its industrial applications - A review. Bioresource Technology 312: 123636.
Hita, I., Heeres, H.J. & Deuss, P.J. 2018.
Insight into structure-reactivity relationships for the iron-catalyzed
hydrotreatment of technical lignins. Bioresource Technology 267: 93-101.
Iakunkov, A. & Talyzin, A.V. 2020. Swelling properties of graphite
oxides and graphene oxide multilayered materials. Nanoscale 12(41):
21060-21093.
Ivanka, S., Albert, K. & Veselin, S.
2010. Properties of crude laccase from Trametes versicolor produced
by solid-substrate fermentation. Advances
in Bioscience and Biotechnology 1(3): 208-215.
Jiang, W.K., Wu, S.B., Lucia, L.A. & Chu, J.Y. 2017. Effect of side-chain structure on hydrothermolysis of lignin model compounds. Fuel
Processing Technology 166: 124-130.
Kamali,
M., Suhas, D.P., Costa, M.E., Capela,
I. & Aminabhavi, T.M. 2019. Sustainability
considerations in membrane-based technologies for industrial effluents
treatment. Chemical Engineering Journal 368: 474-494.
Kashefi, S., Borghei, S.M. & Mahmoodi,
N.M. 2019a.
Covalently immobilized laccase onto graphene oxide nanosheets: Preparation,
characterization, and biodegradation of azo dyes in colored wastewater. Journal of Molecular Liquids 276:
153-162.
Kashefi, S., Borghei, S.M. & Mahmoodi, N.M. 2019b. Superparamagnetic enzyme-graphene oxide magnetic
nanocomposite as an environmentally friendly biocatalyst: Synthesis and
biodegradation of dye using response surface methodology. Microchemical Journal 145: 547-558.
Khabiri, B., Ferdowsi, M., Buelna, G., Jones, J.P. & Heitz, M. 2020. Simultaneous
biodegradation of methane and styrene in biofilters packed with inorganic
supports: Experimental and macrokinetic study. Chemosphere 252: 126492.
Kołodziejczak-Radzimska, A., Budna, A., Ciesielczyk, F., Moszyński,
D. & Jesionowski, T. 2020. Laccase from Trametes versicolor supported onto mesoporous Al2O3: Stability tests and
evaluations of catalytic activity. Process
Biochemistry 95: 71-80.
Lambert, E., Aguié-Béghin,
V., Dessaint, D., Foulon,
L., Chabbert, B., Paës, G.
& Molinari, M. 2019. Real time and quantitative imaging of
lignocellulosic films hydrolysis by atomic force microscopy reveals lignin
recalcitrance at nanoscale. Biomacromolecules 20(1):
515-527.
Liu, Y. & Wang, Z.
2014. Immobilization of laccase on surface modified magnetic silica particles
and its use for the papermaking wastewater. Applied
Mechanics & Materials 670-671: 267-270.
Mainardis, M., Buttazzoni, M., De, B.N., Mion, M. & Goi, D. 2020. Evaluation of ozonation applicability to pulp and paper
streams for a sustainable wastewater treatment. Journal of Cleaner Production 258: 120781.
Mahmoodi, N.M. & Saffar-Dastgerdi, M.H. 2020. Clean laccase immobilized nanobiocatalysts (graphene oxide - zeolite nanocomposites): From production to detailed
biocatalytic degradation of organic pollutant. Applied Catalysis B-Environmental 268: 118443.
Mukundan, S., Melo, J.S., Sen, D. & Bahadur, J. 2020 Enhancement in beta-galactosidase activity of Streptococcus
lactis cells by entrapping in microcapsules comprising of correlated silica
nanoparticles. Colloids and Surfaces B, Biointerfaces 195: 111245.
Naseri, M., Pitzalis, F., Carucci, C., Medda, L., Fotouhi, L., Magner, E. & Salis, A. 2018. Lipase and laccase encapsulated on zeolite imidazolate
framework: Enzyme activity and stability from voltammetric measurements. ChemCatChem 10(23): 5425-5433.
Pang, R., Li, M.Z. & Zhang, C.D. 2015. Degradation of phenolic compounds by laccase immobilized
on carbon nanomaterials: Diffusional limitation investigation. Talanta 131: 38-45.
Samak, N.A., Tan,
Y.Q., Sui,
K.Y., Xia,
T.T., Wang,
K.F., Guo,
C. & Liu,
C.Z. 2018. CotA laccase immobilized on functionalized magnetic graphene oxide nano-sheets for efficient biocatalysis. Molecular Catalysis 445: 269-278.
Singh, D. & Gupta, N. 2020. Microbial
laccase: A robust enzyme and its industrial applications. Biologia 75(8): 1183-1193.
Tisma, M., Salic, A., Planinic, M., Zelic, B., Potocnik, M., Selo, G. & Bucic-Kojic, A. 2020. Production, characterisation and
immobilization of laccase for an efficient aniline -based dye decolourization. Journal
of Water Process Engineering 36: 101327.
Wang, X., Li,
X. & Li,
Y. 2007. A modified Coomassie Brilliant Blue staining method at nanogram
sensitivity compatible with proteomic analysis. Biotechnology Letters 29: 1599-1603.
Yun, K.I. & Han, T.S. 2020. Relationship between enzyme concentration and Michaelis
constant in enzyme assays. Biochimie 176:
12-20.
Zdarta, J., Jankowska, K., Wyszowska, M., Kijenska-Gawronska, E., Zgala-Grzeskowiak, A., Pinelo, M., Meyer, A.S., Moszynski, D. & Jesionowski, T. 2019. Robust biodegradation of naproxen and diclofenac by
laccase immobilized using electrospun nanofibers with
enhanced stability and reusability. Materials
Science & Engineering C-Materials for Biological Applications 103:
109789.
Zhang, J., Han, X.L., Jiang, B., Qiu, X.F. & Gao, B.Y. 2010. A hybrid system combining self-forming dynamic membrane
bioreactor with coagulation process for advanced treatment of bleaching
effluent from straw pulping process. Desalination
and Water Treatment 18(1-3): 212-216.
Zhang, S.T., Wu, Z.F., Chen, G. & Wang, Z. 2018. An improved method to encapsulate laccase from Trametes versicolor with enhanced stability and
catalytic activity. Catalysts 8(7): 286.
Zhao, L.H., Ma, Q.Q., Nie, F., Chen, W. & Sun, H.J. 2018. Increasing laccase activity of white rot fungi by
mutagenesis and treating papermaking wastewater. In IOP Conference Series: Earth and Environmental Science. IOP.
012053.
*Pengarang untuk surat-menyurat; email: lgdx602@sina.com
|