Sains Malaysiana 51(1)(2022): 249-259

http://doi.org/10.17576/jsm-2022-5101-20

 

Effects of Age and Tocotrienol-Rich Fraction on Mitochondrial Respiratory Complexes in the Hippocampus of Rats

(Kesan Umur dan Fraksi Kaya Tokotrienol pada Kompleks Respirasi Mitokondria dalam Hipokampus Tikus)

 

JEN KIT TAN*, SAKINAH HUSNA ABDUL RAZAK, NAZIRAH AB RANI, NUR HALEEDA HAKIMI, HANAFI AHMAD DAMANHURI, SUZANA MAKPOL & WAN ZURINAH WAN NGAH

 

Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 5 Oktober 2020/Diterima: 19 April 2021

 

ABSTRACT

Mitochondrial dysfunction is common in the brain with age. Prevention of mitochondrial dysfunction at an early age may protect the brain against neurodegeneration in later life. Tocotrienol-rich fraction (TRF) has been reported to be neuroprotective in old rats, but its effect remains unknown for middle-aged animals. This study aimed to determine the effect of TRF on activities of mitochondrial respiratory chain complexes in the hippocampus of middle-aged rats. Male Sprague Dawley rats were divided into 4 groups: young control (3 months old), adult control (12 months old), adult rats supplemented with palm kernel oil (PKO) as the vehicle, and adult rats supplemented with TRF by gavage at 200 mg/kg body weight/day for 3 months. At the end of the supplementation, activities of complex I, I+III, II, II+III, III, IV, and citrate synthase in the isolated mitochondria of the hippocampus were measured by spectrophotometry. Complex II activity was higher, while citrate synthase activity was lower in adult rats than in young rats. A decrease of citrate synthase activity suggests loss of mitochondrial mass and intactness in the hippocampus at middle age. Interestingly, PKO-treated adult rats had lower complex I and IV activities, but higher complex I+III activity than adult control rats. These findings indicate PKO modulated activities of the complexes. In TRF-treated adult rats, the complex I activity was higher, while the complex IV activity was lower than PKO-treated adult rats. TRF restored the complex I activity and may have the potential to reverse complex I deficiency.

 

Keywords: Aging; brain; mitochondria; respiratory complex; tocotrienols

 

ABSTRAK

Mitokondria disfungsi dalam otak biasanya berlaku pada usia tua. Halangan terhadap disfungsi tersebut pada waktu muda mungkin berupaya melindungi otak daripada neurodegenerasi semasa berusia. Fraksi kaya tokotrienol (TRF) dilaporkan bersifat pelindung neuron pada tikus tua, namun kesan tersebut tidak diketahui pada haiwan yang berumur pertengahan. Kajian ini bertujuan untuk menentukan kesan TRF terhadap aktiviti kompleks rantaian respiratori mitokondria dalam hipokampus tikus berumur pertengahan. Tikus jantan Sprague Dawley dibahagikan kepada 4 kumpulan: kawalan muda (berusia 3 bulan), kawalan dewasa (berusia 12 bulan), tikus dewasa dengan suplementasi minyak isirung sawit (PKO) sebagai pembawa dan tikus dewasa dengan suplementasi TRF (200 mg/kg) melalui gavaj untuk 3 bulan. Pada hujung suplementasi, aktiviti kompleks I, I+III, II, II+III, III, IV dan sitrat sintase dalam mitokondria yang diasingkan daripada hipokampus diukur dengan spektrofotometri. Aktiviti kompleks II adalah lebih tinggi, manakala sitrat sintase adalah lebih rendah pada tikus dewasa berbanding dengan yang muda. Penurunan aktiviti sitrat sintase mencadangkan kehilangan bilangan dan keutuhan mitokondria dalam hipokampus pada umur pertengahan. Kumpulan PKO mempunyai aktiviti kompleks I dan IV yang lebih rendah, manakala aktiviti kompleks I+III yang lebih tinggi berbanding dengan kawalan tikus dewasa. Hasil ini menunjukkan bahawa PKO mengawal atur aktiviti kompleks tersebut. Dalam kumpulan TRF, aktiviti kompleks I adalah lebih tinggi, manakala aktiviti kompleks IV adalah lebih rendah berbanding dengan kumpulan PKO. TRF telah memulihkan aktiviti kompleks I dan berpotensi menghalang keadaan yang disebabkan oleh defisiensi kompleks I.

 

Kata kunci: Kompleks respirasi; mitokondria; otak; penuaan; tokotrienol

 

RUJUKAN

Abdul Razak, S.H., Ab Rani, N., Hakimi, N.H., Damanhuri, M.H.A., Wan Ngah, W.Z., Makpol, S. & Tan, J.K. 2019. Measurement of citrate synthase activity in a microplate format. Research Updates in Medical Sciences 7(1): 1-8.

Abdul Razak, S.H., Hassan, H., Hakimi, N.H., Ab Rani, N., Ibrahim, F.N., Wan Ngah, W.Z., Makpol, S., Damanhuri, M.H.A., Abdul Karim, N. & Tan, J.K. 2018. Isolation of mitochondria and measurement of oxygen consumption rate by high-resolution respirometry in rat hippocampus. Research Updates in Medical Sciences 6(6): 11-18.

Amigo, I., Menezes-Filho, S.L., Luévano-Martínez, L.A., Chausse, B. & Kowaltowski, A.J. 2017. Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell 16(1): 73-81.

Dell’Agnello, C., Leo, S., Agostino, A., Szabadkai, G., Tiveron, C.C., Zulian, A.A., Prelle, A., Roubertoux, P., Rizzuto, R. & Zeviani, M. 2007. Increased longevity and refractoriness to Ca2+-dependent neurodegeneration in Surf1 knockout mice. Human Molecular Genetics 16(4): 431-444.

Dröse, S. 2013. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochimica et Biophysica Acta - Bioenergetics 1827(5): 578-587.

Durani, L.W., Hamezah, H.S., Ibrahim, N.F., Yanagisawa, D., Nasaruddin, M.L., Mori, M., Azizan, K.A., Damanhuri, H.A., Makpol, S., Wan Ngah, W.Z. & Tooyama, I. 2018. Tocotrienol-rich fraction of palm oil improves behavioral impairments and regulates metabolic pathways in AβPP/PS1 mice. Journal of Alzheimer’s Disease 64(1): 249-267.

Goon, J.A., Aszrin Zainudin, M.S., Karim, N.A. & Wan Ngah, W.Z. 2013. Effect of the tocotrienol-rich fraction on the lifespan and oxidative biomarkers in Caenorhabditis elegans under oxidative stress. Clinics 68(5): 599-604.

Grimm, A. & Eckert, A. 2017. Brain aging and neurodegeneration: From a mitochondrial point of view. Journal of Neurochemistry 143(4): 418-431.

Gusdon, A.M., Callio, J., Distefano, G., O’Doherty, R.M., Goodpaster, B.H., Coen, P.M. & Chu, C.T. 2017. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Experimental Gerontology 90: 1-13.

Hagl, S., Kocher, A., Schiborr, C., Eckert, S.H., Ciobanu, I., Birringer, M., El-Askary, H., Helal, A., Khayyal, M.T., Frank, J., Muller, W.E. & Eckert, G.P. 2013. Rice bran extract protects from mitochondrial dysfunction in guinea pig brains. Pharmacological Research 76: 17-27.

Ibrahim, N.F., Yanagisawa, D., Durani, L.W., Hamezah, H.S., Damanhuri, H.A., Wan Ngah, W.Z., Tsuji, M., Kiuchi, Y., Ono, K. & Tooyama, I. 2017. Tocotrienol-rich fraction modulates amyloid pathology and improves cognitive function in AβPP/PS1 mice. Journal of Alzheimer’s Disease 55(2): 597-612.

Khor, S.C., Razak, A.M., Wan Ngah, W.Z., Mohd Yusof, Y.A., Abdul Karim, N. & Makpol, S. 2016. The tocotrienol-rich fraction is superior to tocopherol in promoting myogenic differentiation in the prevention of replicative senescence of myoblasts. PLoS ONE 11(2): e0149265.

Lanza, I.R., Zabielski, P., Klaus, K.A., Morse, D.M., Heppelmann, C.J., Bergen, H.R., Dasari, S., Walrand, S., Short, K.R., Johnson, M.L., Robinson, M.M., Schimke, J.M., Jakaitis, D.R., Asmann, Y.W., Sun, Z. & Nair, K.S. 2012. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metabolism 16(6): 777-788.

Lim, J.J., Wan Ngah, W.Z., Mouly, V. & Abdul Karim, N. 2013. Reversal of myoblast aging by tocotrienol rich fraction posttreatment. Oxidative Medicine and Cellular Longevity 2013: Article ID. 978101.

López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. & Kroemer, G. 2013. The hallmarks of aging. Cell 153(6): 1194-1217.

Makpol, S., Durani, L.W., Chua, K.H., Mohd Yusof, Y.A. & Wan Ngah, W.Z. 2011. Tocotrienol-rich fraction prevents cell cycle arrest and elongates telomere length in senescent human diploid fibroblasts. Journal of Biomedicine and Biotechnology 2011: 506171.

Menshikova, E.V., Ritov, V.B., Fairfull, L., Ferrell, R.E., Kelley, D.E. & Goodpaster, B.H. 2006. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences 61(6): 534-540.

Navarro, A., Bandez, M.J., Lopez-Cepero, J.M., Gómez, C., Boveris, A.D., Cadenas, E. & Boveris, A. 2011. High doses of vitamin E improve mitochondrial dysfunction in rat hippocampus and frontal cortex upon aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 300(4): 827-834.

Navarro, A., López-Cepero, J.M., Bández, M.J., Sánchez-Pino, M.J., Gómez, C., Cadenas, E. & Boveris, A. 2008. Hippocampal mitochondrial dysfunction in rat aging. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 294(2): 501-509.

Navarro, A., Gómez, C., Sánchez-Pino, M.J., González, H., Bández, M.J., Boveris, A.D. & Boveris, A. 2005. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 289(5): 1392-1399.

Navarro, A., Sánchez Del Pino, M.J., Gómez, C., Peralta, J.L. & Boveris, A. 2002. Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology 282(4): 985-992.

Pathak, R.U. & Davey, G.P. 2008. Complex I and energy thresholds in the brain. Biochimica et Biophysica Acta - Bioenergetics 1777(7-8): 777-782.

Pollard, A.K., Craig, E.L. & Chakrabarti, L. 2016. Mitochondrial complex 1 activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS ONE 11(6): e0157405.

Sandhu, S.K. & Kaur, G. 2003. Mitochondrial electron transport chain complexes in aging rat brain and lymphocytes. Biogerontology 4(1): 19-29.

Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. & Angelini, C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nature Protocols 7(6): 1235-1246.

Sun, N., Youle, R.J. & Finkel, T. 2016. The mitochondrial basis of aging. Molecular Cell 61(5): 654-666.

Tajul Arifin, K., Tuan Sheng, G., Muhammed Whisz, Q., Blitzer, B., Saidatul Akmaliah, A., Nurliza, A., Pei Jia, L. & Rachael Shristi, W. 2019. Tocotrienol-rich fraction (TRF) improves the viability of wild-type Saccharomyces cerevisiae in the initial stationary phase. Medicine & Health 14(1): 106-117.

Tan, J.K., Then, S.M., Mazlan, M., Raja Abdul Rahman, R.N.Z., Jamal, R. & Wan Ngah, W.Z. 2016. Gamma-tocotrienol acts as a BH3 mimetic to induce apoptosis in neuroblastoma SH-SY5Y cells. Journal of Nutritional Biochemistry 31: 28-37.

Taridi, N.M., Abd Rani, N., Abd Latiff, A., Wan Ngah, W.Z. & Mazlan, M. 2014. Tocotrienol rich fraction reverses age-related deficits in spatial learning and memory in aged rats. Lipids 49(9): 855-869.

 

*Pengarang untuk surat-menyurat; email: jenkittan@ukm.edu.my

 

 

 

 

   

sebelumnya