Sains
Malaysiana 51(1)(2022): 249-259
http://doi.org/10.17576/jsm-2022-5101-20
Effects of Age and Tocotrienol-Rich Fraction on
Mitochondrial Respiratory Complexes in the Hippocampus of Rats
(Kesan Umur dan Fraksi Kaya Tokotrienol pada Kompleks Respirasi
Mitokondria dalam Hipokampus Tikus)
JEN KIT TAN*, SAKINAH HUSNA ABDUL RAZAK, NAZIRAH AB RANI,
NUR HALEEDA HAKIMI, HANAFI AHMAD DAMANHURI, SUZANA MAKPOL & WAN ZURINAH WAN
NGAH
Department of Biochemistry, Faculty of Medicine, Universiti
Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 5 Oktober 2020/Diterima: 19 April 2021
ABSTRACT
Mitochondrial dysfunction is common in the brain with age.
Prevention of mitochondrial dysfunction at an early age may protect the brain
against neurodegeneration in later life. Tocotrienol-rich fraction (TRF) has
been reported to be neuroprotective in old rats, but its effect remains unknown
for middle-aged animals. This study aimed to determine the effect of TRF on
activities of mitochondrial respiratory chain complexes in the hippocampus of
middle-aged rats. Male Sprague Dawley rats were divided into 4 groups: young
control (3 months old), adult control (12 months old), adult rats supplemented
with palm kernel oil (PKO) as the vehicle, and adult rats supplemented with TRF
by gavage at 200 mg/kg body weight/day for 3 months. At the end of the
supplementation, activities of complex I, I+III, II, II+III, III, IV, and
citrate synthase in the isolated mitochondria of the hippocampus were measured
by spectrophotometry. Complex II activity was higher, while citrate synthase
activity was lower in adult rats than in young rats. A decrease of citrate
synthase activity suggests loss of mitochondrial mass and intactness in the
hippocampus at middle age. Interestingly, PKO-treated adult rats had lower
complex I and IV activities, but higher complex I+III activity than adult
control rats. These findings indicate PKO modulated activities of the
complexes. In TRF-treated adult rats, the complex I activity was higher, while
the complex IV activity was lower than PKO-treated adult rats. TRF restored the
complex I activity and may have the potential to reverse complex I deficiency.
Keywords: Aging; brain; mitochondria; respiratory complex;
tocotrienols
ABSTRAK
Mitokondria disfungsi dalam otak biasanya berlaku pada usia
tua. Halangan terhadap disfungsi tersebut pada waktu muda mungkin berupaya
melindungi otak daripada neurodegenerasi semasa berusia. Fraksi kaya
tokotrienol (TRF) dilaporkan bersifat pelindung neuron pada tikus tua, namun
kesan tersebut tidak diketahui pada haiwan yang berumur pertengahan. Kajian ini
bertujuan untuk menentukan kesan TRF terhadap aktiviti kompleks rantaian
respiratori mitokondria dalam hipokampus tikus berumur pertengahan. Tikus
jantan Sprague Dawley dibahagikan kepada 4 kumpulan: kawalan muda (berusia 3
bulan), kawalan dewasa (berusia 12 bulan), tikus dewasa dengan suplementasi
minyak isirung sawit (PKO) sebagai pembawa dan tikus dewasa dengan suplementasi
TRF (200 mg/kg) melalui gavaj untuk 3 bulan. Pada hujung suplementasi, aktiviti
kompleks I, I+III, II, II+III, III, IV dan sitrat sintase dalam mitokondria
yang diasingkan daripada hipokampus diukur dengan spektrofotometri. Aktiviti
kompleks II adalah lebih tinggi, manakala sitrat sintase adalah lebih rendah
pada tikus dewasa berbanding dengan yang muda. Penurunan aktiviti sitrat
sintase mencadangkan kehilangan bilangan dan keutuhan mitokondria dalam
hipokampus pada umur pertengahan. Kumpulan PKO mempunyai aktiviti kompleks I
dan IV yang lebih rendah, manakala aktiviti kompleks I+III yang lebih tinggi
berbanding dengan kawalan tikus dewasa. Hasil ini menunjukkan bahawa PKO
mengawal atur aktiviti kompleks tersebut. Dalam kumpulan TRF, aktiviti kompleks
I adalah lebih tinggi, manakala aktiviti kompleks IV adalah lebih rendah
berbanding dengan kumpulan PKO. TRF telah memulihkan aktiviti kompleks I dan
berpotensi menghalang keadaan yang disebabkan oleh defisiensi kompleks I.
Kata kunci: Kompleks respirasi; mitokondria; otak; penuaan; tokotrienol
RUJUKAN
Abdul Razak, S.H., Ab Rani, N., Hakimi, N.H., Damanhuri,
M.H.A., Wan Ngah, W.Z., Makpol, S. & Tan, J.K. 2019. Measurement of citrate
synthase activity in a microplate format. Research
Updates in Medical Sciences 7(1): 1-8.
Abdul Razak, S.H., Hassan, H., Hakimi, N.H., Ab Rani, N.,
Ibrahim, F.N., Wan Ngah, W.Z., Makpol, S., Damanhuri, M.H.A., Abdul Karim, N.
& Tan, J.K. 2018. Isolation of mitochondria and measurement of oxygen
consumption rate by high-resolution respirometry in rat hippocampus. Research Updates in Medical Sciences 6(6): 11-18.
Amigo, I., Menezes-Filho, S.L., Luévano-Martínez, L.A.,
Chausse, B. & Kowaltowski, A.J. 2017. Caloric restriction increases brain
mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell 16(1): 73-81.
Dell’Agnello, C., Leo, S., Agostino, A., Szabadkai, G.,
Tiveron, C.C., Zulian, A.A., Prelle, A., Roubertoux, P., Rizzuto, R. &
Zeviani, M. 2007. Increased longevity and refractoriness to Ca2+-dependent
neurodegeneration in Surf1 knockout mice. Human
Molecular Genetics 16(4): 431-444.
Dröse, S. 2013. Differential effects of complex II on
mitochondrial ROS production and their relation to cardioprotective pre- and
postconditioning. Biochimica et
Biophysica Acta - Bioenergetics 1827(5): 578-587.
Durani, L.W., Hamezah, H.S., Ibrahim, N.F., Yanagisawa, D.,
Nasaruddin, M.L., Mori, M., Azizan, K.A., Damanhuri, H.A., Makpol, S., Wan
Ngah, W.Z. & Tooyama, I. 2018. Tocotrienol-rich fraction of palm oil
improves behavioral impairments and regulates metabolic pathways in
AβPP/PS1 mice. Journal of
Alzheimer’s Disease 64(1): 249-267.
Goon, J.A., Aszrin Zainudin, M.S., Karim, N.A. & Wan
Ngah, W.Z. 2013. Effect of the tocotrienol-rich fraction on the lifespan and
oxidative biomarkers in Caenorhabditis
elegans under oxidative stress. Clinics 68(5): 599-604.
Grimm, A. & Eckert, A. 2017. Brain aging and
neurodegeneration: From a mitochondrial point of view. Journal of Neurochemistry 143(4): 418-431.
Gusdon, A.M., Callio, J., Distefano, G., O’Doherty, R.M.,
Goodpaster, B.H., Coen, P.M. & Chu, C.T. 2017. Exercise increases
mitochondrial complex I activity and DRP1 expression in the brains of aged
mice. Experimental Gerontology 90:
1-13.
Hagl, S., Kocher, A., Schiborr, C., Eckert, S.H., Ciobanu,
I., Birringer, M., El-Askary, H., Helal, A., Khayyal, M.T., Frank, J., Muller,
W.E. & Eckert, G.P. 2013. Rice bran extract protects from mitochondrial
dysfunction in guinea pig brains. Pharmacological
Research 76: 17-27.
Ibrahim, N.F., Yanagisawa, D., Durani, L.W., Hamezah, H.S.,
Damanhuri, H.A., Wan Ngah, W.Z., Tsuji, M., Kiuchi, Y., Ono, K. & Tooyama,
I. 2017. Tocotrienol-rich fraction modulates amyloid pathology and improves
cognitive function in AβPP/PS1 mice. Journal
of Alzheimer’s Disease 55(2): 597-612.
Khor, S.C., Razak, A.M., Wan Ngah, W.Z., Mohd Yusof, Y.A.,
Abdul Karim, N. & Makpol, S. 2016. The tocotrienol-rich fraction is
superior to tocopherol in promoting myogenic differentiation in the prevention
of replicative senescence of myoblasts. PLoS
ONE 11(2): e0149265.
Lanza, I.R., Zabielski, P., Klaus, K.A., Morse, D.M.,
Heppelmann, C.J., Bergen, H.R., Dasari, S., Walrand, S., Short, K.R., Johnson,
M.L., Robinson, M.M., Schimke, J.M., Jakaitis, D.R., Asmann, Y.W., Sun, Z.
& Nair, K.S. 2012. Chronic caloric restriction preserves mitochondrial
function in senescence without increasing mitochondrial biogenesis. Cell Metabolism 16(6): 777-788.
Lim, J.J., Wan Ngah, W.Z., Mouly, V. & Abdul Karim, N.
2013. Reversal of myoblast aging by tocotrienol rich fraction posttreatment. Oxidative Medicine and Cellular Longevity 2013: Article ID. 978101.
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M.
& Kroemer, G. 2013. The hallmarks of aging. Cell 153(6): 1194-1217.
Makpol, S., Durani, L.W., Chua, K.H., Mohd Yusof, Y.A. &
Wan Ngah, W.Z. 2011. Tocotrienol-rich fraction prevents cell cycle arrest and
elongates telomere length in senescent human diploid fibroblasts. Journal of Biomedicine and Biotechnology 2011: 506171.
Menshikova, E.V., Ritov, V.B., Fairfull, L., Ferrell, R.E.,
Kelley, D.E. & Goodpaster, B.H. 2006. Effects of exercise on mitochondrial
content and function in aging human skeletal muscle. Journals of Gerontology - Series A Biological Sciences and Medical
Sciences 61(6): 534-540.
Navarro, A., Bandez, M.J., Lopez-Cepero, J.M., Gómez, C.,
Boveris, A.D., Cadenas, E. & Boveris, A. 2011. High doses of vitamin E
improve mitochondrial dysfunction in rat hippocampus and frontal cortex upon
aging. American Journal of Physiology -
Regulatory Integrative and Comparative Physiology 300(4): 827-834.
Navarro, A., López-Cepero, J.M., Bández, M.J., Sánchez-Pino,
M.J., Gómez, C., Cadenas, E. & Boveris, A. 2008. Hippocampal mitochondrial
dysfunction in rat aging. American
Journal of Physiology - Regulatory Integrative and Comparative Physiology 294(2): 501-509.
Navarro, A., Gómez, C., Sánchez-Pino, M.J., González, H.,
Bández, M.J., Boveris, A.D. & Boveris, A. 2005. Vitamin E at high doses
improves survival, neurological performance, and brain mitochondrial function
in aging male mice. American Journal of
Physiology - Regulatory Integrative and Comparative Physiology 289(5):
1392-1399.
Navarro, A., Sánchez Del Pino, M.J., Gómez, C., Peralta,
J.L. & Boveris, A. 2002. Behavioral dysfunction, brain oxidative stress,
and impaired mitochondrial electron transfer in aging mice. American Journal of Physiology - Regulatory
Integrative and Comparative Physiology 282(4): 985-992.
Pathak, R.U. & Davey, G.P. 2008. Complex I and energy
thresholds in the brain. Biochimica et
Biophysica Acta - Bioenergetics 1777(7-8): 777-782.
Pollard, A.K., Craig, E.L. & Chakrabarti, L. 2016.
Mitochondrial complex 1 activity measured by spectrophotometry is reduced
across all brain regions in ageing and more specifically in neurodegeneration. PLoS ONE 11(6): e0157405.
Sandhu, S.K. & Kaur, G. 2003. Mitochondrial electron
transport chain complexes in aging rat brain and lymphocytes. Biogerontology 4(1): 19-29.
Spinazzi, M., Casarin, A., Pertegato, V., Salviati, L. &
Angelini, C. 2012. Assessment of mitochondrial respiratory chain enzymatic
activities on tissues and cultured cells. Nature
Protocols 7(6): 1235-1246.
Sun, N., Youle, R.J. & Finkel, T. 2016. The
mitochondrial basis of aging. Molecular
Cell 61(5): 654-666.
Tajul Arifin, K., Tuan Sheng, G., Muhammed Whisz, Q.,
Blitzer, B., Saidatul Akmaliah, A., Nurliza, A., Pei Jia, L. & Rachael
Shristi, W. 2019. Tocotrienol-rich fraction (TRF) improves the viability of
wild-type Saccharomyces cerevisiae in
the initial stationary phase. Medicine
& Health 14(1): 106-117.
Tan, J.K., Then, S.M., Mazlan, M., Raja Abdul Rahman,
R.N.Z., Jamal, R. & Wan Ngah, W.Z. 2016. Gamma-tocotrienol acts as a BH3
mimetic to induce apoptosis in neuroblastoma SH-SY5Y cells. Journal of Nutritional Biochemistry 31:
28-37.
Taridi, N.M., Abd Rani, N., Abd Latiff, A., Wan Ngah, W.Z.
& Mazlan, M. 2014. Tocotrienol rich fraction reverses age-related deficits
in spatial learning and memory in aged rats. Lipids 49(9): 855-869.
*Pengarang
untuk surat-menyurat; email: jenkittan@ukm.edu.my
|