Sains Malaysiana 51(2)(2022): 405-419
http://doi.org/10.17576/jsm-2022-5102-07
New Empirical Approach for the Estimation of
Soil Cohesion and Friction Angle in 2D Form for Site Investigations
(Pendekatan Empirik Baru terhadap Anggaran
Persepaduan Tanah dan Sudut Geseran dalam Bentuk 2D untuk Kajian Lapangan)
BALA BALARABE1,2, ANDY ANDERSON BERY1*, TEOH
YING JIA1 & AMIN ESMAIL KHALIL3
1School of Physics, Universiti Sains Malaysia, 11800
Penang, Malaysia
2Department of Physics, Faculty of Physical
Sciences, Ahmadu Bello University, Zaria, Nigeria
3Geology Department, Faculty of Science, Helwan
University, Ain Helwan, Cairo, Egypt
Diserahkan: 18 Januari
2021/Diterima: 18 Jun 2021
ABSTRACT
This paper presents the
multiple linear regression (MLR) models developed from electrical resistivity
and seismic refraction surveys for quick prediction of subsurface soil’s shear
strength parameters. A total of four parameters have been considered with electrical
resistivity and seismic refraction velocity as the independent variables: and
soil cohesion and internal friction angle as the dependent variables. In order
to mitigate the effects of nonlinearity of resistivity and velocity, both
datasets were initially log-transformed to conform with the fundamental
assumptions of regression analysis. Two models were therefore built based on
the strong multiple linear relationships between explanatory and response
variables, with coefficient of determination (R2), 0.777, p-values,
< 0.050, Durbin-Watson value, 1.787 and multicollinearity, 1.185. The
obtained models’ coefficients were transferred and used for the estimation of
2D models soil cohesion and internal angle of friction for validation.
Thereafter, the developed models demonstrated good performance, having
subjected to accuracy assessment with results at < 5%, and < 10% for the
root mean square error (RMSE) and weighted mean absolute percentage error
(MAPE) respectively. Therefore, the new developed soil’s shear strength MLR
models have provided continual description of soil properties in
two-dimensional form, enhancing the subsurface information for site
investigations as compared, to one-dimensional information from the invasive
method.
Keywords: Land uses; refraction; regression;
resistivity; shear strength
ABSTRAK
Kajian ini membentangkan model regresi linear
berganda (MLR) yang dibangunkan daripada tinjauan kerintangan elektrik dan
pembiasan seismik untuk meramalkan parameter kekuatan ricih bagi permukaan
bawah tanah. Sebanyak empat parameter telah dipertimbangkan dengan halaju
kerintangan elektrik dan biasan seismik sebagai pemboleh ubah tidak bersandar:
dan persepaduan tanah dan sudut geseran dalaman sebagai pemboleh ubah bersandar.
Untuk mengurangkan kesan tidak kelinearan kerintangan dan halaju, kedua-dua set
data pada mulanya diubah log untuk mematuhi andaian asas analisis regresi. Oleh
itu, kedua-dua model dibina berdasarkan hubungan linear berganda yang kuat
antara pemboleh ubah penjelasan dan tindak balas, dengan pekali penentuan (R2),
0.777, nilai-p, < 0.050, nilai Durbin-Watson, 1.787 dan multikolineariti,
1.185. Pekali model yang diperoleh telah dipindahkan dan digunakan untuk
menganggarkan persepaduan tanah model 2D dan sudut geseran dalaman untuk
pengesahan. Kemudian, model yang dibangunkan menunjukkan prestasi yang baik,
setelah tertakluk kepada penilaian ketepatan dengan keputusan pada < 5 dan
< 10% masing-masing untuk ralat purata kuasa dua akar (RMSE) dan ralat peratusan
mutlak purata berpemberat (MAPE). Oleh itu, model MLR kekuatan ricih tanah yang
baru dibangunkan telah memberikan penerangan berterusan tentang sifat tanah
dalam bentuk dua dimensi, maklumat bawah permukaan tanah untuk kajian tapak
berbanding dengan maklumat satu dimensi daripada kaedah invasif.
Kata kunci: Biasan; kegunaan tanah; kekuatan
ricih; kerintangan; regresi
RUJUKAN
Abdul
Hamid, F.A.Z., Abu Bakar, A.F., Ng,
T.F., Ghani, A.A. & Mohamad Zulkefly, M.T. 2019. Distribution and
contamination assessment of potentially harmful elements (As, Pb, Ni, Cd) in
top soil of Penang Island, Malaysia. Environmental
Earth Sciences 78(21): 1-12.
Abidin,
S.N.Z. & Jaffar, M.M. 2014. Forecasting share prices of small size
companies in Bursa
Malaysia using geometric brownian motion. Applied
Mathematics & Information Sciences 8(1): 16632699.
Adewoyin,
O., Joshua, E., Akinyemi, M.L., Maxwell, O. & Aanuoluwa, A. 2021.
Evaluation of geotechnical parameters of reclaimed land from near-surface
seismic refraction method. Heliyon 7(4): e06765.
Ahmad,
F., Yahaya, A.S. & Farooqi, M.A. 2006. Characterization and geotechnical
properties of Penang residual soils with emphasis on landslide. American Journal of Environmental Sciences 2(4):
121-128.
Al-Heety,
A.H. & Shanshal, Z.M. 2016. Integration of seismic refraction tomography
and electrical resistivity tomography in engineering geophysics for soil characterization. Arabian Journal of Geosciences 9(1):
1-11.
Alimoradi,
A., Moradzadeh, A., Naderi, R. & Salehi, M.Z. 2008. Prediction of
geological hazardous zones in front of a tunnel face using TSP-203 and
artificial neural networks. Tunnelling
and Underground Space Technology 23(6): 711-717.
Azwin,
I., Saad, R. & Nordiana, M. 2013. Applying the seismic refraction
tomography for site characterization. Procedia 5: 227-231.
Balarabe,
M., Abdullah, K., Nawawi, M. & Khalil, A.E. 2016. Monthly temporal-spatial
variability and estimation of absorbing aerosol index using ground-based
meteorological data in Nigeria. Atmospheric
and Climate Science 6(3): 425-444.
Beldjazia,
A. & Alatou, D. 2016. Precipitation variability on the Massif Forest of Mahouna (North Eastern-Algeria) from 1986 to 2010. International Journal of Management
Science and Business Research 5(3): 21-28.
Brixova,
B., Mosna, A. & Putiska, R. 2018. Applications of shallow seismic
refraction measurements in the Western Carpathians (Slovakia): Case studies. Contributions to Geophysics and Geodesy 48(1): 1-21.
Caterina,
D., Beaujean, J., Robert, T. & Nguyen, F. 2013. A comparison study of
different image appraisal tools for electrical resistivity tomography. Near Surface Geophysics 11(6): 639-657.
Collins,
B.D. & Sitar, N. 2016. Geotechnical properties of cemented sands in steep
slopes. Journal of Geotechnical and
Geoenvironmental Engineering 135(10): 1359-1366.
Durbin,
J. & Watson, G.S. 1949. Testing for serial correlation in least squares
regression: I. Biometrika 37(3/4):
409-428.
Gabr,
A., Murad, A.A., Baker, H., Bloushi, K.M.A., Arman, H. & Mahmoud, S. 2012.
The use of seismic refraction and electrical techniques to investigate
groundwater aquifer, Wadi Al-Ain, United Arab Emirates (UAE). In International Conference Water Resources and
Wetland. Tulcea, Romania.
Ghosh,
R. 2013. Effect of soil moisture in the analysis of undrained shear strength of
compacted clayey soil. Journal of Civil
Engineering and Construction Technology 4(1): 23-31.
Guo,
N. & Zhao, J. 2013. The signature of shear-induced anisotropy in granular
media. Computers and Geotechnics 47:
1-15.
Han,
Z., Li, J., Gao, P., Huang, B., Ni, J. & Wei, C. 2020. Determining the
shear strength and permeability of soils for engineering of new paddy field
construction in a hilly mountainous region of Southwestern China. International Journal of Environmental
Research and Public Health 17(5): 1555.
Horn, R.
2003. Stress - strain effects in structured unsaturated soils on coupled
mechanical and hydraulic processes. Geoderma 116: 77-88.
Ismail,
M.A.M., Majid, T.A., Goh, C.O., Lim, S.P. & Tan, C.G. 2019. Geological
assessment for tunnel excavation under river with shallow overburden using
surface site investigation data and electrical resistivity tomography. Measurement 144: 260-274.
Juhojuntti,
N. & Kamm, J. 2015. Joint inversion of seismic refraction and resistivity
data using layered models - Applications to groundwater investigation. Geophysics 80(1): EN43-EN55.
Junior,
S.B.L., Prado, R.L. & Mendes, R.M. 2012. Application of multichannel
analysis of surface waves method (MASW) data acquisition. Revista Brasileira de Geoisica 30(2): 213-224.
Kim,
S. & Kim, H. 2016. A new metric of absolute percentage error for
intermittent demand forecasts. International
Journal of Forecasting 32(3): 669-679.
Martínez,
K. & Mendoza, J.A. 2011. Urban seismic site investigations for a new metro
in central Copenhagen: Near
surface imaging using reflection, refraction and VSP methods. Physics and Chemistry of Earth, Parts A/B/C 36:
1228-1236.
Mcclymont,
A., Bauman, P., Johnson, E. & Pankratow, L. 2016. Geophysical applications to
construction engineering projects. Recorder 41(4): 16-22.
Meju,
M.A., Gallardo, L.A. & Mohamed, L.K. 2003. Evidence for correlation of
electrical resistivity and seismic velocity in heterogeneous near-surface
materials. Geophysical Research Letters 30(7): 7-10.
Mitchell,
J.K. & Soga, K. 2005. Fundamentals of Soil Behavior. 3rd ed. New Jersey: John Wiley & Sons Inc.
Mogaji,
K.A., Lim, H.S. & Abdullah, K. 2015. Modeling of groundwater recharge using
a multiple linear regression (MLR) recharge model developed from geophysical
parameters: A case of
groundwater resources management. Environmental
Earth Sciences 73(3): 1217-1230.
Mota,
R. & Monteiro Santos, F.A. 2010. 2D sections of porosity and water
saturation from integrated resistivity and seismic surveys. Near Surface Geophysics 8(6): 575-584.
Muhammad,
S.B. & Saad, R. 2018. Linear regression models for estimating true subsurface
resistivity from apparent resistivity data. Journal
of Earth System Science 127(5): 64.
Nguyen,
F., Garambois, S., Jongmans, D., Pirard, E. & Loke, M.H. 2005. Image
processing of 2D resistivity data for imaging faults. Journal of Applied Geophysics 57: 260-277.
O'Brien,
R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41: 673-690.
Okpoli,
C.C. 2013. Sensitivity and resolution capacity of electrode configurations. International Journal of Geophysics 2013:
608037.
Olabode,
O.P., San, L.H. & Ramli, M.H. 2020. Analysis of geotechnical-assisted 2-D
electrical resistivity tomography monitoring of slope instability in residual
soil of weathered granitic basement. Frontier
in Earth Science 7: 1-15.
Owusu-nimo,
F. & Boadu, F.K. 2020. Evaluating effective stress conditions in soils
using non-invasive electrical measurements - laboratory studies. Journal
of Applied Geophysics 174: 103961.
Sadek,
M.A., Chen, Y. & Liu, J. 2011. Simulating shear behavior of a sandy soil
under different soil conditions. Journal
of Terramechanics 48(6): 451-458.
Shahangian,
S. 2011. Variable cohesion model for soil shear strength evaluation. In 14th Pan-American Conference on Soil Mechanics
and Geotechnical Engineering. Toronto, Canada.
Shahrukh,
M., Soupios, P., Papadopoulos, N. & Sarris, A. 2012. Geophysical
investigations at the istron archaeological site, Eastern Crete, Greece using
seismic refraction and electrical resistivity tomography. Journal of Geophysics and Engineering 9(6): 749-760.
Shtivelman,
V. 2003. Application of shallow seismic methods to engineering, environmental
and groundwater investigations. Bollettino
di Geofisica Teorica ed Applicata 44(3-4): 209-222.
Van Hoorde,
M., Hermans, T., Dumont, G. & Nguyen, F. 2017. 3D electrical resistivity
tomography of karstified formations using cross-line measurements. Engineering Geology 220(13): 123-132.
Wei,
Y., Wu, X., Xia, J., Miller, G.A., Cai, C. & Guo, Z. 2019. The effect of
water content on the shear strength characteristics of granitic soils in South
China. Soil & Tillage Research 187: 50-59.
Whiteley,
J.S., Chambers, J.E., Uhlemann, S., Boyd, J., Cimpoiasu, M.O., Holmes, J.L.,
Inauen, C.M., Watlet, A., Hawley-Sibbett, L.R., Sujitapan, C., Swift, R.T.
& Kendall, J.M. 2020. Landslide monitoring using seismic refraction
tomography - the
importance of incorporating topographic variations. Engineering Geology 268: 105525.
Willmott,
C.J. & Matsuura, K. 2006. On the use of dimensioned measures of error to
evaluate the performance of spatial interpolators. International Journal of Geographical Information Science 20(1): 89-102.
Wu,
Z., Niu, Q., Li, W., Lin, N.H. & Liu, S. 2018. Ground stability evaluation
of a coal-mining area: A case
study of Yingshouyingzi mining area, China. Journal
of Geophysics and Engineering 15(5): 2252-2265.
Yeh,
H.F., Lin, H.I., Wu, C.S., Hsu, K.C., Lee, J.W. & Lee, C.H. 2015.
Electrical resistivity tomography applied to groundwater aquifer at downstream
of Chih-Ben Creek Basin, Taiwan. Environmental
Earth Science Earth Science 73(8): 4681-4687.
Yokoi,
H. 1968. Relationship between soil cohesion and shear strength. Soil Science and Plant Nutrition 14(3):
89-93.
*Pengarang untuk surat-menyurat; email: andersonbery@yahoo.com.my
|