Sains Malaysiana 51(2)(2022): 405-419

http://doi.org/10.17576/jsm-2022-5102-07

 

New Empirical Approach for the Estimation of Soil Cohesion and Friction Angle in 2D Form for Site Investigations

(Pendekatan Empirik Baru terhadap Anggaran Persepaduan Tanah dan Sudut Geseran dalam Bentuk 2D untuk Kajian Lapangan)

 

BALA BALARABE1,2, ANDY ANDERSON BERY1*, TEOH YING JIA1 & AMIN ESMAIL KHALIL3

 

1School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

2Department of Physics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

 

3Geology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt

 

Diserahkan: 18 Januari 2021/Diterima: 18 Jun 2021

 

ABSTRACT

This paper presents the multiple linear regression (MLR) models developed from electrical resistivity and seismic refraction surveys for quick prediction of subsurface soil’s shear strength parameters. A total of four parameters have been considered with electrical resistivity and seismic refraction velocity as the independent variables: and soil cohesion and internal friction angle as the dependent variables. In order to mitigate the effects of nonlinearity of resistivity and velocity, both datasets were initially log-transformed to conform with the fundamental assumptions of regression analysis. Two models were therefore built based on the strong multiple linear relationships between explanatory and response variables, with coefficient of determination (R2), 0.777, p-values, < 0.050, Durbin-Watson value, 1.787 and multicollinearity, 1.185. The obtained models’ coefficients were transferred and used for the estimation of 2D models soil cohesion and internal angle of friction for validation. Thereafter, the developed models demonstrated good performance, having subjected to accuracy assessment with results at < 5%, and < 10% for the root mean square error (RMSE) and weighted mean absolute percentage error (MAPE) respectively. Therefore, the new developed soil’s shear strength MLR models have provided continual description of soil properties in two-dimensional form, enhancing the subsurface information for site investigations as compared, to one-dimensional information from the invasive method.

 

Keywords: Land uses; refraction; regression; resistivity; shear strength

 

ABSTRAK

Kajian ini membentangkan model regresi linear berganda (MLR) yang dibangunkan daripada tinjauan kerintangan elektrik dan pembiasan seismik untuk meramalkan parameter kekuatan ricih bagi permukaan bawah tanah. Sebanyak empat parameter telah dipertimbangkan dengan halaju kerintangan elektrik dan biasan seismik sebagai pemboleh ubah tidak bersandar: dan persepaduan tanah dan sudut geseran dalaman sebagai pemboleh ubah bersandar. Untuk mengurangkan kesan tidak kelinearan kerintangan dan halaju, kedua-dua set data pada mulanya diubah log untuk mematuhi andaian asas analisis regresi. Oleh itu, kedua-dua model dibina berdasarkan hubungan linear berganda yang kuat antara pemboleh ubah penjelasan dan tindak balas, dengan pekali penentuan (R2), 0.777, nilai-p, < 0.050, nilai Durbin-Watson, 1.787 dan multikolineariti, 1.185. Pekali model yang diperoleh telah dipindahkan dan digunakan untuk menganggarkan persepaduan tanah model 2D dan sudut geseran dalaman untuk pengesahan. Kemudian, model yang dibangunkan menunjukkan prestasi yang baik, setelah tertakluk kepada penilaian ketepatan dengan keputusan pada < 5 dan < 10% masing-masing untuk ralat purata kuasa dua akar (RMSE) dan ralat peratusan mutlak purata berpemberat (MAPE). Oleh itu, model MLR kekuatan ricih tanah yang baru dibangunkan telah memberikan penerangan berterusan tentang sifat tanah dalam bentuk dua dimensi, maklumat bawah permukaan tanah untuk kajian tapak berbanding dengan maklumat satu dimensi daripada kaedah invasif.

Kata kunci: Biasan; kegunaan tanah; kekuatan ricih; kerintangan; regresi

 

RUJUKAN

 

Abdul Hamid, F.A.Z., Abu Bakar, A.F., Ng, T.F., Ghani, A.A. & Mohamad Zulkefly, M.T. 2019. Distribution and contamination assessment of potentially harmful elements (As, Pb, Ni, Cd) in top soil of Penang Island, Malaysia. Environmental Earth Sciences 78(21): 1-12.

Abidin, S.N.Z. & Jaffar, M.M. 2014. Forecasting share prices of small size companies in Bursa Malaysia using geometric brownian motion. Applied Mathematics & Information Sciences 8(1): 16632699.

Adewoyin, O., Joshua, E., Akinyemi, M.L., Maxwell, O. & Aanuoluwa, A. 2021. Evaluation of geotechnical parameters of reclaimed land from near-surface seismic refraction method. Heliyon 7(4): e06765.

Ahmad, F., Yahaya, A.S. & Farooqi, M.A. 2006. Characterization and geotechnical properties of Penang residual soils with emphasis on landslide. American Journal of Environmental Sciences 2(4): 121-128.

Al-Heety, A.H. & Shanshal, Z.M. 2016. Integration of seismic refraction tomography and electrical resistivity tomography in engineering geophysics for soil characterization. Arabian Journal of Geosciences 9(1): 1-11.

Alimoradi, A., Moradzadeh, A., Naderi, R. & Salehi, M.Z. 2008. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks. Tunnelling and Underground Space Technology 23(6): 711-717.

Azwin, I., Saad, R. & Nordiana, M. 2013. Applying the seismic refraction tomography for site characterization. Procedia 5: 227-231.

Balarabe, M., Abdullah, K., Nawawi, M. & Khalil, A.E. 2016. Monthly temporal-spatial variability and estimation of absorbing aerosol index using ground-based meteorological data in Nigeria. Atmospheric and Climate Science 6(3): 425-444.

Beldjazia, A. & Alatou, D. 2016. Precipitation variability on the Massif Forest of Mahouna (North Eastern-Algeria) from 1986 to 2010. International Journal of Management Science and Business Research 5(3): 21-28.

Brixova, B., Mosna, A. & Putiska, R. 2018. Applications of shallow seismic refraction measurements in the Western Carpathians (Slovakia): Case studies. Contributions to Geophysics and Geodesy 48(1): 1-21.

Caterina, D., Beaujean, J., Robert, T. & Nguyen, F. 2013. A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surface Geophysics 11(6): 639-657.

Collins, B.D. & Sitar, N. 2016. Geotechnical properties of cemented sands in steep slopes. Journal of Geotechnical and Geoenvironmental Engineering 135(10): 1359-1366.

Durbin, J. & Watson, G.S. 1949. Testing for serial correlation in least squares regression: I. Biometrika 37(3/4): 409-428.

Gabr, A., Murad, A.A., Baker, H., Bloushi, K.M.A., Arman, H. & Mahmoud, S. 2012. The use of seismic refraction and electrical techniques to investigate groundwater aquifer, Wadi Al-Ain, United Arab Emirates (UAE). In International Conference Water Resources and Wetland. Tulcea, Romania.

Ghosh, R. 2013. Effect of soil moisture in the analysis of undrained shear strength of compacted clayey soil. Journal of Civil Engineering and Construction Technology 4(1): 23-31.

Guo, N. & Zhao, J. 2013. The signature of shear-induced anisotropy in granular media. Computers and Geotechnics 47: 1-15.

Han, Z., Li, J., Gao, P., Huang, B., Ni, J. & Wei, C. 2020. Determining the shear strength and permeability of soils for engineering of new paddy field construction in a hilly mountainous region of Southwestern China. International Journal of Environmental Research and Public Health 17(5): 1555.

Horn, R. 2003. Stress - strain effects in structured unsaturated soils on coupled mechanical and hydraulic processes. Geoderma 116: 77-88.

Ismail, M.A.M., Majid, T.A., Goh, C.O., Lim, S.P. & Tan, C.G. 2019. Geological assessment for tunnel excavation under river with shallow overburden using surface site investigation data and electrical resistivity tomography. Measurement 144: 260-274.

Juhojuntti, N. & Kamm, J. 2015. Joint inversion of seismic refraction and resistivity data using layered models - Applications to groundwater investigation. Geophysics 80(1): EN43-EN55.

Junior, S.B.L., Prado, R.L. & Mendes, R.M. 2012. Application of multichannel analysis of surface waves method (MASW) data acquisition. Revista Brasileira de Geoisica 30(2): 213-224.

Kim, S. & Kim, H. 2016. A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting 32(3): 669-679.

Martínez, K. & Mendoza, J.A. 2011. Urban seismic site investigations for a new metro in central Copenhagen: Near surface imaging using reflection, refraction and VSP methods. Physics and Chemistry of Earth, Parts A/B/C 36: 1228-1236.

Mcclymont, A., Bauman, P., Johnson, E. & Pankratow, L. 2016. Geophysical applications to construction engineering projects. Recorder 41(4): 16-22.

Meju, M.A., Gallardo, L.A. & Mohamed, L.K. 2003. Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophysical Research Letters 30(7): 7-10.

Mitchell, J.K. & Soga, K. 2005. Fundamentals of Soil Behavior. 3rd ed. New Jersey: John Wiley & Sons Inc.

Mogaji, K.A., Lim, H.S. & Abdullah, K. 2015. Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters: A case of groundwater resources management. Environmental Earth Sciences 73(3): 1217-1230.

Mota, R. & Monteiro Santos, F.A. 2010. 2D sections of porosity and water saturation from integrated resistivity and seismic surveys. Near Surface Geophysics 8(6): 575-584.

Muhammad, S.B. & Saad, R. 2018. Linear regression models for estimating true subsurface resistivity from apparent resistivity data. Journal of Earth System Science 127(5): 64.

Nguyen, F., Garambois, S., Jongmans, D., Pirard, E. & Loke, M.H. 2005. Image processing of 2D resistivity data for imaging faults. Journal of Applied Geophysics 57: 260-277.

O'Brien, R.M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41: 673-690.

Okpoli, C.C. 2013. Sensitivity and resolution capacity of electrode configurations. International Journal of Geophysics 2013: 608037.

Olabode, O.P., San, L.H. & Ramli, M.H. 2020. Analysis of geotechnical-assisted 2-D electrical resistivity tomography monitoring of slope instability in residual soil of weathered granitic basement. Frontier in Earth Science 7: 1-15.

Owusu-nimo, F. & Boadu, F.K. 2020. Evaluating effective stress conditions in soils using non-invasive electrical measurements - laboratory studies. Journal of Applied Geophysics 174: 103961.

Sadek, M.A., Chen, Y. & Liu, J. 2011. Simulating shear behavior of a sandy soil under different soil conditions. Journal of Terramechanics 48(6): 451-458.

Shahangian, S. 2011. Variable cohesion model for soil shear strength evaluation. In 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. Toronto, Canada.

Shahrukh, M., Soupios, P., Papadopoulos, N. & Sarris, A. 2012. Geophysical investigations at the istron archaeological site, Eastern Crete, Greece using seismic refraction and electrical resistivity tomography. Journal of Geophysics and Engineering 9(6): 749-760.

Shtivelman, V. 2003. Application of shallow seismic methods to engineering, environmental and groundwater investigations. Bollettino di Geofisica Teorica ed Applicata 44(3-4): 209-222.

Van Hoorde, M., Hermans, T., Dumont, G. & Nguyen, F. 2017. 3D electrical resistivity tomography of karstified formations using cross-line measurements. Engineering Geology 220(13): 123-132.

Wei, Y., Wu, X., Xia, J., Miller, G.A., Cai, C. & Guo, Z. 2019. The effect of water content on the shear strength characteristics of granitic soils in South China. Soil & Tillage Research 187: 50-59.

Whiteley, J.S., Chambers, J.E., Uhlemann, S., Boyd, J., Cimpoiasu, M.O., Holmes, J.L., Inauen, C.M., Watlet, A., Hawley-Sibbett, L.R., Sujitapan, C., Swift, R.T. & Kendall, J.M. 2020. Landslide monitoring using seismic refraction tomography - the importance of incorporating topographic variations. Engineering Geology 268: 105525.

Willmott, C.J. & Matsuura, K. 2006. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science 20(1): 89-102.

Wu, Z., Niu, Q., Li, W., Lin, N.H. & Liu, S. 2018. Ground stability evaluation of a coal-mining area: A case study of Yingshouyingzi mining area, China. Journal of Geophysics and Engineering 15(5): 2252-2265.

Yeh, H.F., Lin, H.I., Wu, C.S., Hsu, K.C., Lee, J.W. & Lee, C.H. 2015. Electrical resistivity tomography applied to groundwater aquifer at downstream of Chih-Ben Creek Basin, Taiwan. Environmental Earth Science Earth Science 73(8): 4681-4687.

Yokoi, H. 1968. Relationship between soil cohesion and shear strength. Soil Science and Plant Nutrition 14(3): 89-93.

 

*Pengarang untuk surat-menyurat; email: andersonbery@yahoo.com.my

 

 

   

sebelumnya