Sains Malaysiana 51(2)(2022): 519-532

http://doi.org/10.17576/jsm-2022-5102-16

 

Synthesis and Characterization of Metal Sulfates Loaded Palm Empty Fruit Bunch (PEFB) for Biodiesel Production

(Sintesis dan Pencirian Sulfat Logam Dimuatkan Tandan Kosong Kelapa Sawit (PEFB) untuk Pengeluaran Biodiesel)

 

RAHILA ISHFAQ1*, NURUN NAJWA RUSLAN1, NURSYAFREENA ATTAN2, SUZI SALWAH JIKAN1 & AMIRA SARYATI AMERUDDIN1

 

1Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor Darul Takzim, Malaysia

 

2Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM, Johor Darul Takzim, Malaysia

 

Diserahkan: 6 Februari 2021/Diterima: 28 Mei 2021

 

ABSTRACT

Biodiesel has been globally accepted as a green substitute for diesel fuel. However, the insecurity of food raised with the application of edible sources in biodiesel production has caused much debate. The feasible alternative technique is the use of inedible and low-grade sources such as palm fatty acid distillate (PFAD). In this work, the production of biodiesel (FAME) from PFAD using solid acid catalysts (SACs) derived from palm empty fruit bunch (PEFB) is investigated. The SACs were synthesized through impregnation of different metal sulfate precursors, i.e. ferrous sulfate heptahydrate (FeSO4.7H2O), copper sulfate pentahydrate (CuSO4.5H2O), and magnesium sulfate heptahydrate (MgSO4.7H2O) over PEFB. SEM-EDX observations found that impregnation and then calcination resulted in attachment of sulfur (S) and improved surface porosity. FT-IR analysis showed that there were distinct interactions between metal sulfates and PEFB. XRD characterization showed that the prepared catalysts have a crystalline structure. Besides, the catalytic activity of the SACs was closely associated with their acid densities measured by the titration method. Fe-PEFB catalyst showed the highest acid density (2.44 mmol/g) among the catalysts studied. To study the effect of process parameters on FFA conversion (%), optimization of methanol: PFAD molar ratio, catalyst dosage, reaction temperature, and reaction time was conducted. Maximum FFA conversion of 89.1% was obtained over Fe-PEFB while Cu-PEFB and Mg-PEFB achieved an FFA conversion of 63 and 56.5%, respectively, under the optimum reaction conditions. Thus, the present study offers a sustainable and environmentally benign method for biodiesel production.

 

Keywords: Biodiesel; biomass waste; esterification; impregnation; palm fatty acid distillate; solid acid catalysts

 

ABSTRAK

Biodiesel telah diterima secara global sebagai pengganti hijau untuk bahan api diesel. Walau bagaimanapun, ketidakamanan makanan yang dibangkitkan dengan penggunaan sumber yang boleh dimakan dalam pengeluaran biodiesel telah menyebabkan banyak perdebatan. Teknik alternatif yang boleh dilaksanakan ialah penggunaan sumber yang tidak boleh dimakan dan bermutu rendah seperti sulingan asid lemak kelapa sawit (PFAD). Dalam kerja ini, pengeluaran biodiesel (FAME) daripada PFAD menggunakan mangkin asid pepejal (SAC) yang diperoleh daripada tandan kosong kelapa sawit (PEFB) telah dikaji. SAC telah disintesis melalui penjejalan pelopor sulfat logam yang berbeza, iaitu, ferus sulfat heptahidrat (FeSO4.7H2O), kuprum sulfat pentahidrat (CuSO4.5H2O) dan magnesium sulfat heptahidrat (MgSO4.7H2O) berbanding PEFB. Pemerhatian SEM-EDX mendapati bahawa penjejalan dan kemudian pengkalsinan menghasilkan perlekatan sulfur (S) dan liang permukaan bertambah baik. Analisis FT-IR menunjukkan bahawa terdapat interaksi yang berbeza antara sulfat logam dan PEFB. Pencirian XRD menunjukkan bahawa pemangkin yang disediakan mempunyai struktur hablur. Selain itu, aktiviti pemangkin SAC berkaitan dengan ketumpatan asid mereka yang diukur dengan kaedah pentitratan. Mangkin Fe-PEFB menunjukkan ketumpatan asid tertinggi (2.44 mmol/g) antara mangkin yang telah dikaji. Untuk mengkaji kesan parameter proses terhadap penukaran FFA (%), pengoptimuman metanol:nisbah molar PFAD, dos mangkin, suhu tindak balas dan masa tindak balas telah dijalankan. Penukaran FFA maksimum sebanyak 89.1% diperoleh berbanding Fe-PEFB manakala Cu-PEFB dan Mg-PEFB mencapai penukaran FFA sebanyak 63 dan 56.5%, dalam keadaan tindak balas yang optimum. Oleh itu, kajian ini menawarkan kaedah yang mampan dan jinak alam sekitar untuk pengeluaran biodiesel.

 

Kata kunci: Biodiesel; mangkin asid pepejal; pengesteran; penjejalan; penyulingan asid lemak sawit; sisa biojisim

RUJUKAN

Abdulkareem-Alsultan, G., Asikin-Mijan, N., Mansir, N., Lee, H.V., Zainal, Z., Islam, A. & Taufiq-Yap, Y.H. 2019. Pyro-lytic de-oxygenation of waste cooking oil for green diesel production over Ag2O3-La2O3/AC nano-catalyst. Journal of Analytical and Applied Pyrolysis 137: 171-184.

Akinfalabi, S.I., Rashid, U., Shean, T.Y.C., Nehdi, I.A., Sbihi, H.M. & Gewik, M.M. 2019. Esterification of palm fatty acid distillate for biodiesel production catalyzed by synthesized kenaf seed cake-based sulfonated catalyst. Catalysts 9(5): 482.

Akinfalabi, S.I., Rashid, U., Yunus, R. & Taufiq-Yap, Y.H. 2017. Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renewable Energy 111: 611-619.

Alsultan, G.A., Asikin-Mijan, N., Lee, H., Albazzaz, A.S. & Taufiq-Yap, Y. 2017. Deoxygenation of waste cooking to renewable diesel over walnut shell-derived nanorode activated carbon supported CaO-La2O3 catalyst. Energy Conversion and Management 151: 311-323.

Ariza, M.J., Jones, D.J. & Rozière, J. 2002. Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly (benzimidazole) membranes. Desalination 147(1-3) 183-189.

Arun, K., Batra, A., Krishna, A., Bhat, K., Aggarwal, M. & Francis, P.J. 2015. Surfactant free hydrothermal synthesis of copper oxide nanoparticles. American Journal of Materials Science 5: 36-38.

Chai, M., Tu, Q., Lu, M. & Yang, Y.J. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology 125: 106-113.

Chang, A.S., Sherazi, S.T.H., Kandhro, A.A., Mahesar, S.A., Chang, F., Shah, S.N., Laghari, Z.H. & Panhwar, T. 2016. Characterization of palm fatty acid distillate of different oil processing industries of Pakistan. Journal of Oleo Science65(11): 897-901.

Chang, B., Fu, J., Tian, Y. & Dong, X. 2013. Soft-template synthesis of sulfonated mesoporous carbon with high catalytic activity for biodiesel production. RSC Advances 3(6): 1987-1994.

D'Souza, R., Vats, T., Chattree, A. & Siril, P.F. 2018. Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renewable Energy 126: 1064-1073.

Dehkhoda, A.M., West, A.H. & Ellis, N. 2010. Biochar based solid acid catalyst for biodiesel production. Applied Catalysis A: General 382(2): 197-204.

Dong, T., Gao, D., Miao, C., Yu, X., Degan, C., Garcia-Pérez, M., Rasco, B., Sablani, S.S. & Chen, S. 2015. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Conversion and Management 105: 1389-1396.

Ekmekyapar, A., Demirkıran, N., Künkül, A. & Aktaş, E. 2015. Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide. Brazilian Journal of Chemical Engineering 32: 155-165.

Encinar, J., González, J., Martínez, G., Sánchez, N. & Pardal, A. 2012. Soybean oil transesterification by the use of a microwave flow system. Fuel 95: 386-393.

Ezzah-Mahmudah, S., Lokman, I.M., Saiman, M.I. & Taufiq-Yap, Y.H. 2016. Synthesis and characterization of Fe2O3/CaO derived from Anadara granosa for methyl ester production. Energy Conversion and Management 126: 124-131.

Flores, K.P., Omega, J.L.O., Cabatingan, L.K., Go, A.W., Agapay, R.C. & Ju, Y.H. 2019. Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renewable Energy 130: 510-523.

Gapoor, A., Hassan, W. & Sulong, M. 2002. Phytochemical for nutraceutical from the by product of palm oil refining. Palm Oil Develop 36: 13-19.

González, M., Cea, M., Reyes, D., Romero-Hermoso, L., Hidalgo, P., Meier, S., Benito, N. & Navia, R. 2017. Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production. Energy Conversion and Management 137: 165-173.

Gowri Krishnan, S., Pua, F.L., Palanisamy, K. & Nabihah, S. 2016. Preparation of oil palm EFB derived solid acid catalyst for esterification reaction: Effect of calcination temperature. Key Engineering Materials 701: 117-121.

Guo, F., Xiu, Z.L. & Liang, Z.X. 2012. Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst. Applied Energy 98: 47-52.

Hayyan, A., Alam, M.Z., Mirghani, M.E., Kabbashi, N.A., Hakimi, N.I.N.M., Siran, Y.M. & Tahiruddin, S. 2010. Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresource Technology 101(20): 7804-7811.

Hoffmann, M.M. & Conradi, M.S. 1998. Are there hydrogen bonds in supercritical methanol and ethanol? The Journal of Physical Chemistry B 102(1) 263-271.

Jacobson, K., Gopinath, R., Meher, L.C. & Dalai, A.K. 2008. Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 85(1-2): 86-91.

Ji, H., Lee, S., Park, J., Kim, T., Choi, S. & Oh, M. 2018. Improvement in crystallinity and porosity of poorly crystalline metal–organic frameworks (MOFs) through their induced growth on a well-crystalline MOF template. Inorganic Chemistry 57(15): 9048-9054.

Knözinger, H. & Kochloefl, K. 2000. Heterogeneous catalysis and solid catalysts. Ullmann's Encyclopedia of Industrial Chemistry. United States: Wiley.

Lathiya, D.R., Bhatt, D.V. & Maheria, K.C. 2018. Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresource Technology Reports 2: 69-76.

Lee, D. 2013. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst. Molecules 18(7): 8168-8180.

Liu, K., Wang, R. & Yu, M. 2018. An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: Preparation, characterization, and performance in biodiesel production. Renewable Energy 127: 531-538.

Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H. & Yunus, R. 2015. Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renewable Energy 81: 347-354.

Lokman, I.M., Rashid, U., Zainal, Z., Yunus, R. & Taufiq-Yap, Y.H. 2014. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate. Journal of Oleo Science 63: 849-855.

Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A. & Goodwin, J.G. 2005. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research 44(14): 5353-5363.

Malins, K., Brinks, J., Kampars, V. & Malina, I. 2016. Esterification of rapeseed oil fatty acids using a carbon-based heterogeneous acid catalyst derived from cellulose. Applied Catalysis A: General 519: 99-106.

Marinković, D.M., Stanković, M.V., Veličković, A.V., Avramović, J.M., Miladinović, M.R., Stamenković, O.O., Veljković, V.B. & Jovanović, D.M. 2016. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews 56: 1387-1408.

Mengyu, G., Deng, P., Li, M., En, Y. & Jianbing, H. 2009. The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C catalyst. Chinese Journal of Chemical Engineering 17(1): 83-87.

Nakatani, N., Takamori, H., Takeda, K. & Sakugawa, H. 2009. Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresource Technology 100(3): 1510-1513.

Nautiyal, P., Subramanian, K. & Dastidar, M. 2014. Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process. Fuel 135: 228-234.

Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M. & Hayashi, S. 2006. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials 18(13): 3039-3045.

Paul, A.K. 2018. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A new lewis acid catalyst. Journal of Molecular Structure 1157: 672-678.

Peng-Lim, B., Ganesan, S., Maniam, G.P. & Khairuddean, M. 2012. Sequential conversion of high free fatty acid oils into biodiesel using a new catalyst system. Energy 46(1): 132-139.

Ping, B.T.Y. & Yusof, M. 2009. Characteristics and properties of fatty acid distillates from palm oil. Oil Palm Bulletin 59: 5-11.

Rezaei, R., Mohadesi, M. & Moradi, G. 2013. Optimization of biodiesel production using waste mussel shell catalyst. Fuel 109: 534-541.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology 102(15): 7237-7243.

Sharma, Y., Singh, B. & Upadhyay, S. 2008. Advancements in development and characterization of biodiesel: A review. Fuel 87: 2355-2373.

Shuit, S.H. & Tan, S.H. 2014. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate. Energy Conversion and Management 88: 1283-1289.

Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K. & Abudula, A. 2015. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion and Management 95: 242-247.

Soriano Jr., N.U., Venditti, R. & Argyropoulos, D.S. 2009. Biodiesel synthesis via homogeneous lewis acid-catalyzed transesterification. Fuel 88(3): 560-565.

Su, F. & Guo, Y. 2014. Advancements in solid acid catalysts for biodiesel production. Green Chemistry 16(6): 2934-2957.

Sundar, S., Venkatachalam, G. & Kwon, S.J. 2018. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8(10): 823.

Supamathanon, N., Wittayakun, J. & Prayoonpokarach, S. 2011. Properties of Jatropha seed oil from northeastern Thailand and its transesterification catalyzed by potassium supported on NaY zeolite. Journal of Industrial and Engineering Chemistry 17(2): 182-185.

Suppalakpanya, K., Ratanawilai, S. & Tongurai, C. 2010. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy 87(7): 2356-2359.

Takeshita, T., Ohnishi, R. & Tanabe, K. 1974. Recent survey of catalysis by solid metal sulfates. Catalysis Reviews 8(1): 29-63.

Theivasanthi, T. & Alagar, M. 2010. X-ray diffraction studies of copper nanopowder. arXiv preprint arXiv:1003.6068.

Thushari, I. & Babel, S. 2018a. Preparation of solid acid catalysts from waste biomass and their application for microwave-assisted biodiesel production from waste palm oil. Waste Management & Research 36(8): 719-728.

Thushari, P. & Babel, S. 2018b. Biodiesel production from waste palm oil using palm empty fruit bunch-derived novel carbon acid catalyst. Journal of Energy Resources Technology 140(3): 032204.

Uzun, B.B., Kılıç, M., Özbay, N., Pütün, A.E. & Pütün, E. 2012. Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties. Energy 44(1): 347-351.

Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H. & Tominaga, Y. 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society 77(4): 355-360.

Xia, P., Liu, F., Wang, C., Zuo, S. & Qi, C. 2012. Efficient mesoporous polymer based solid acid with superior catalytic activities towards transesterification to biodiesel. Catalysis Communications 26: 140-143.

Xue, W., Sun, L., Yang, F., Wang, Z. & Li, F. 2016. Peanut shell-derived carbon solid acid with large surface area and its application for the catalytic hydrolysis of cyclohexyl acetate. Materials 9(10): 833.

Yu, D., Tian, L., Wu, H., Wang, S., Wang, Y., Ma, D. & Fang, X. 2010. Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochemistry 45(4): 519-525.

Yujaroen, D., Goto, M., Sasaki, M. & Shotipruk, A. 2009. Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction reactivity. Fuel 88(10): 2011-2016.

Zhang, J. & Jiang, L. 2008. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource Technology 99(18): 8995-8998.

Zhu, S., Chen, M., Ren, W., Yang, J., Qu, S., Li, Z. & Diao, G. 2015. Microwave assisted synthesis of α-Fe2O3/reduced graphene oxide as anode material for high performance lithium ion batteries. New Journal of Chemistry 39(10): 7923-7931.

Zong, M.H., Duan, Z.Q., Lou, W.Y., Smith, T.J. & Wu, H. 2007. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry 9(5): 434-437.

 

*Pengarang untuk surat-menyurat; email: rahilanaz.ishfaq@gmail.com

 

 

   

sebelumnya