Sains Malaysiana 51(2)(2022): 619-632

http://doi.org/10.17576/jsm-2022-5102-25

 

Bödewadt Flow and Heat Transfer in Nanofluid over a Permeable and Radially Stretching Disk

(Aliran Bödewadt dan Pemindahan Haba dalam Nanobendalir terhadap Cakera Telap dan Meregang secara Jejarian)

 

ANIS ANISAH MAHYUDDIN1, LOK YIAN YIAN1* & SYAKILA AHMAD2

 

1Mathematics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

 

2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

 

Diserahkan: 10 Mac 2021/Diterima: 2 Jun 2021

 

 

ABSTRACT

A Bödewadt boundary layer flow and heat transfer problem in nanofluid was investigated in this study for suction/injection as well as combined effects of suction/injection and radial stretching disk. Similarity variables were introduced to transform the three-dimensional flow into a system of ordinary differential equations. Moreover, similar to the Bödewadt heat transfer problem in a viscous fluid, adequate suction is also required so that similarity solutions exist for nanofluid problems with no other boundary effects such as a partial slip or stretching disk. Both the suction and stretching disk effects can suppress the natural oscillatory behavior of flow apart from reducing the momentum and thermal boundary layer thicknesses. As expected, injection acts oppositely. However, the skin friction coefficient and heat transfer rate for Bödewadt flow increase with the increasing suction and stretching parameters. As for stagnant disk, increasing the nanoparticle volume fraction can enhance the wall shear stress, whereas nanofluid can only enhance the heat transfer when both the suction and nanoparticle volume fraction are sufficiently small. For radially stretching disk, both the local skin friction coefficient and local Nusselt number increase as the nanoparticle volume fraction increases. However, for larger suction, a smaller volume fraction of nanoparticles yielded enhanced heat transfer than the larger volume fraction of nanoparticles.

 

Keywords: Bödewadt flow; nanofluid; numerical solutions; radial stretching; suction/injection

 

ABSTRAK

Penyelidikan ini mengkaji masalah aliran sempadan Bödewadt dan pemindahan haba dalam nanobendalir bagi kes sedutan/semburan dan juga gabungan kes sedutan/semburan dan regangan jejari cakera. Pemboleh ubah keserupaan telah diperkenalkan untuk menjelmakan aliran tiga dimensi kepada sistem persamaan pembezaan biasa. Sama seperti kes pemindahan haba Bödewadt dalam cecair likat, tenaga sedutan yang mencukupi juga diperlukan agar penyelesaian keserupaan wujud untuk masalah nanobendalir tanpa kesan sempadan lain seperti slip separa atau regangan cakera. Kedua-dua kes sedutan dan regangan mempunyai kesan untuk menekan perilaku aliran berayun semula jadi dan dapat mengurangkan ketebalan lapisan sempadan momentum dan termal. Seperti yang dijangkakan, semburan bertindak sebaliknya. Pekali geseran kulit dan kadar pemindahan haba untuk aliran Bödewadt meningkat dengan peningkatan parameter penyedutan dan regangan. Untuk kes cakera statik yang tiada regangan tetapi berlakunya sedutan, peningkatan pecahan isi padu nanozarah meningkatkan geseran dinding. Walau bagaimanapun, peningkatan pemindahan haba hanya berlaku ketika nilai sedutan dan pecahan isi padu nanozarah cukup kecil. Untuk kes cakera regangan jejari, kedua-dua parameter iaitu pekali geseran kulit tempatan dan nombor Nusselt tempatan meningkat apabila pecahan isi padu nanozarah meningkat. Namun, untuk nilai sedutan yang besar, pecahan isi padu nanozarah yang lebih kecil memberikan peningkatan pemindahan haba yang lebih baik daripada pecahan isi padu nanozarah yang lebih besar.

 

Kata kunci: Aliran Bödewadt; nanobendalir; penyelesaian berangka; regangan jejari; sedutan/semburan

 

RUJUKAN

Batchelor, G.K. 1951. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. The Quarterly Journal of Mechanics and Applied Mathematics 4(1): 29-41.

Cengel, Y.A. 2004. Heat Transfer: A Practical Approach. 2nd ed. New York: McGraw-Hill.

Faller, A.J. 1991. Instability and transition of disturbed flow over a rotating disk. Journal of Fluid Mechanics 230: 245-269.

Fernandez-Feria, R. 2002. Stability analysis of boundary layer flow due to the presence of a small hole on a surface. Physical Review E 65(3): 036307.

Joshi, V.K., Ram, P., Sharma, R.K. & Tripathi, D. 2017. Porosity effect on the boundary layer Bodewadt flow of a magnetic nanofluid in the presence of geothermal viscosity. The European Physical Journal Plus 132(6): 254.

Khan, J.A., Mustafa, M., Hayat, T. & Alzahrani, F. 2017. Numerical study for Bödewadt flow of water based nanofluid over a deformable disk: Buongiorno model. Indian Journal of Physics 91(5): 527-533.

Lingwood, R.J. & Alfredsson, P.H. 2000. Experimental study of the stability of the Bödewadt layer. In Laminar-Turbulent Transition. IUTAM Symposia (International Union of Theoretical and Applied Mechanics), edited by Fasel, H.F.  & Saric, W.S. Berlin, Heidelberg: Springer. pp. 553-558.

Lopez, J.M. & Weidman, P.D. 1996. Stability of stationary endwall boundary layers during spin-down. Journal of Fluid Mechanics 326: 373-398.

MacKerrell, S.O. 2005. Stability of Bödewadt flow. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363(1830): 1181-1187.

Mahyuddin, A.A., Lok, Y.Y. & Ahmad, S. 2021. Bödewadt flow and heat transfer in nanofluid over a stagnant disk with suction. In Proceedings of the International Conference on Mathematical Science and Technology 2020 (MathTech 2020), AIP Conference Proceedings. AIP Publishing. No. 2423: 020012.

Mustafa, M. & Khan, J.A. 2017. Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk. Journal of Molecular Liquids 234: 287-295.

Mustafa, M., Pop, I., Naganthran, K. & Nazar, R. 2018. Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction. European Journal of Mechanics - B/Fluids 72: 179-188.

Mustafa, M., Khan, J.A., Hayat, T. & Alsaedi, A. 2015. On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. Journal of Molecular Liquids 211: 119-125.

Rafiq, T. & Hashmi, M.M. 2019. Bödewadt flow over a permeable disk with homogeneous-heterogeneous reactions: A numerical study. Applied Sciences 9(19): 4046.

Rafiq, T., Mustafa, M. & Farooq, M.A. 2019. Numerical assessment of Bödewadt flow and heat transfer over a permeable disk with variable fluid properties. Physica A: Statistical Mechanics and its Applications 534: 122138.

Rahman, M. & Andersson, H.I. 2018. Revolving flow of a fluid-particle suspension with suction. Alexandria Engineering Journal 57(4): 2567-2572.

Rahman, M. & Andersson, H.I. 2017. On heat transfer in Bödewadt flow. International Journal of Heat and Mass Transfer 112: 1057-1061.

Sahoo, B. 2011. Effects of slip on steady Bödewadt flow and heat transfer of an electrically conducting non-Newtonian fluid. Communications in Nonlinear Science and Numerical Simulation 16(11): 4284-4295.

Sahoo, B. & Shevchuk I.V. 2019. Heat transfer due to revolving flow of Reiner-Rivlin fluid over a stretchable surface. Thermal Science and Engineering Progress 10: 327-336.

Sahoo, B. & Poncet, S. 2012. Effects of slip on steady Bödewadt flow of a non-Newtonian fluid. Communications in Nonlinear Science and Numerical Simulation 17(11): 4181-4191.

Sahoo, B., Poncet, S. & Labropulu, F. 2015. Suction/injection effects on the swirling flow of a Reiner-Rivlin fluid near a rough surface. Journal of Fluids 2015: 253504.

Sahoo, B., Abbasbandy, S. & Poncet, S. 2014. A brief note on the computation of the Bödewadt flow with Navier slip boundary conditions. Computers & Fluids 90: 133-137.

Sahoo, B., Van Gorder, R.A. & Andersson, H.I. 2012. Steady revolving flow and heat transfer of a non-Newtonian Reiner-Rivlin fluid. International Communications in Heat and Mass Transfer 39(3): 336-342.

Savaş, Ö. 1987. Stability of Bödewadt flow. Journal of Fluid Mechanics 183: 77-94.

Schlichting, H. 1979. Boundary-Layer Theory. 7th ed. New York: McGraw-Hill.

Trisaksri, V. & Wongwises, S. 2007. Critical review of heat transfer characteristics of nanofluids. Renewable and Sustainable Energy Reviews 11(3): 512-523.

Turkyilmazoglu, M. 2015. Bödewadt flow and heat transfer over a stretching stationary disk. International Journal of Mechanical Sciences 90: 246-250.

Turner, M.R. & Weidman, P. 2017. Stability of a radially stretching disk beneath a uniformly rotating fluid. Physical Review Fluids 2(7): 073904.

Wang, X.Q. & Mujumdar, A.S. 2008. A review on nanofluids - part II: Experiments and applications. Brazilian Journal of Chemical Engineering 25(4): 631-648.

Yin, C., Zheng, L., Zhang, C. & Zhang, X. 2017. Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propulsion and Power Research 6(1): 25-30.

 

*Pengarang untuk surat-menyurat; email: lokyy@usm.my

 

 

   

sebelumnya