Sains Malaysiana 51(3)(2022): 633-642
http://doi.org/10.17576/jsm-2022-5103-01
Allelopathic Potential of Cassava (Manihot esculenta L.)
Extracts on Germination and Seedling Growth of Selected Weeds and Aerobic Rice
(Potensi Alelopati Ekstrak Ubi Kayu (Manihot exulenta L.) terhadap Percambahan dan Pertumbuhan
Anak Benih Rumpai Terpilih dan Padi Aerobik)
SITI AISYAH MOHAMMAD TAUPIK1,2,3,4, SITI NUR ANISAH AANI3, CHIA POH WAI5 & CHUAH TSE SENG2,*
1Institute of Graduate Studies, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor
Darul Ehsan, Malaysia
2Faculty of Plantation and Agrotechnology,
Universiti Teknologi MARA, 02600 Arau, Perlis Indera Kayangan, Malaysia
3Faculty of Plantation and Agrotechnology,
Universiti Teknologi MARA, 77300 UiTM Merlimau, Melaka, Malaysia
4Faculty of Fisheries and Food Sciences,
Universiti Malaysia Terengganu, 21030 UMT Kuala Nerus, Terengganu Darul Iman,
Malaysia
5Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 UMT Kuala Nerus, Terengganu Darul Iman,
Malaysia
Diserahkan: 15 September 2020/Diterima: 25
Februari 2021
ABSTRACT
Weed infestation is a major
problem in the aerobic rice system due to the lack of standing water that could
prevent the growth of weeds. To reduce heavy reliance on herbicide, this
research aims to determine the potential of cassava allelopathy for inhibition
of weeds in aerobic rice. The allelopathic potential of cassava extracts on the
germination and growth of tested weed species (Eleusine indica, Ageratum
conyzoides, and Cyperus distans) and aerobic rice (Oryza sativa)
was conducted in the laboratory. The results showed that increasing the aqueous
extract concentrations of cassava extracts inhibited the germination and
seedling growth of tested weeds, suggesting the allelopathic effects of cassava
extracts are concentration dependent. The degree of phytotoxicity of different
vegetative parts of cassava can be classified in order of decreasing inhibition
as follows: leaf, stem, tuber, and tuber peel. Aqueous leaf extract of cassava
at a concentration of 0.5% (w/v) provided complete inhibition on A.
conyzoides, E. indica, and C. distans germination whereas 25% to
100% inhibition on the shoot growth was recorded. By contrast, the shoot growth
and germination of aerobic rice were not affected. These results suggest that
the cassava leaf extracts contain water-soluble allelochemicals for inhibition
on A. conyzoides, E. indica, and C. distans in aerobic rice.
Keywords: Ageratum
conyzoides; aqueous leaf extract; Cyperus distans; Eleusine indica;
Manihot esculenta
ABSTRAK
Serangan rumpai adalah masalah utama dalam sistem padi aerobik kerana kekurangan air bertakung dapat mengawal pertumbuhan rumpai. Bagi mengurangkan kebergantungan yang tinggi pada racun rumpai, kajian ini bertujuan untuk menentukan potensi alelopati ubi kayu untuk perencatan rumpai dalam padi aerobik. Potensi alelopati ekstrak ubi kayu terhadap percambahan dan pertumbuhan rumpai (Eleusine indica,
Ageratum conyzoides dan Cyperus distans) dan padi aerobik (Oryza sativa) dijalankan dalam pengasaian makmal. Hasil kajian menunjukkan bahawa peningkatan kepekatan ekstrak akues ubi kayu telah merencatkan percambahan, pertumbuhan anak benih dan pertumbuhan akar rumpai yang diuji dan ini mencadangkan kesan alelopati ekstrak ubi kayu bergantung kepada kepekatan. Tahap kefitotoksikan daripada bahagian vegetatif ubi kayu yang berbeza dapat dikelaskan dalam urutan penurunan perencatan seperti berikut: daun, batang, ubi dan kulit. Ekstrak daun ubi kayu pada kepekatan 0.5% (w/v) memberi perencatan sepenuhnya terhadap percambahan rumpai manakala perencatan sebanyak 25% hingga 100% ke atas pertumbuhan pucuk A. conyzoides, E. indica dan C. distans dicatatkan. Sebaliknya, pertumbuhan pucuk dan percambahan padi aerobik tidak terjejas. Hasil ini menunjukkan bahawa ekstrak daun ubi kayu mengandungi alelokimia yang larut dalam air untuk merencat A. conyzoides, E. indica dan C. distans dalam padi aerobik.
Kata kunci: Ageratum conyzoides; Cyperus distans; ekstrak daun ubi; Eleusine indica; Manihot esculenta
RUJUKAN
Abbas, T., Nadeem, M.A.,
Tanveer, A. & Chauhan, B.S. 2017. Can hormesis of plant-released
phytotoxins be used to boost and sustain crop production. Crop Protection 93:
69-76.
Adhikary, S.P. 2019. Efficacy
of rice-stubble allelochemicals on vegetative growth parameters of some
oil-yielding crops. International Journal of Trend in Scientific Research
and Development 3(2): 2456-6470.641
Ahmed, H.M. 2018. Phytochemical screening,
total phenolic content and phytotoxic activity of corn (Zea mays)
extracts against some indicator species. Natural Product Research 32(6):
714-718.
Alam, A., Hakim, M.A., Juraimi, A.S.,
Rafii, M.Y., Hasan, M.M. & Aslani, F. 2015. Potential allelopathic effects
of rice plant aqueous extracts on germination and seedling growth of some rice
field common weeds. Italian Journal of Agronomy 13(2): 134-140.
Altemimi, A., Lakhssassi, N., Baharlouei,
A. & Watson, D.G. 2017. Phytochemicals: Extraction, isolation, and
identification of bioactive compounds from plant extracts. Plants 6(42):
1-23.
Al-Shatti, A.H., Redha, A., Suleman, P.
& Al-Hasan, R. 2014. The allelopathic potential of Conocarpus
lancifolius (Engl.) leaves on dicot (Vigna sinensis L.), monocot (Zea
mays L.) and soil-borne pathogenic fungi. American Journal of Plant
Sciences 5(19): 2889-2903.
Anwar, M.P., Juraimi, A.S., Samedani, B.,
Puteh, A. & Man, A. 2012. Critical period of weed control in aerobic rice. The
Scientific World Journal 2012: 603043.
Chon, S.U., Choi, S.K., Jung, S., Jang,
H.G., Pyo, B.S. & Kim, S.M. 2002. Effects of alfalfa leaf extracts and
phenolic allelochemicals on early seedling growth and root morphology of
alfalfa and barnyard grass. Crop Protection 12: 1077-1082.
Chuah, T.S. & Lim, W.K. 2015.
Assessment of phytotoxic potential of oil palm leaflet, rachis and frond
extracts and powders on goosegrass (Eleusine indica (L.) Gaertn.)
germination, emergence and seedling growth. Malaysian Applied Biology 44(2):
75-84.
Cowie, B.W., Venter, N., Witkowski, E.T.F.
& Byrne, M.J. 2020. Implications of elevated carbon dioxide on the
susceptibility of the globally invasive weed, Parthenium hysterophorus,
to glyphosate herbicide. Pest Management Science 76: 2324-2332.
Dilipkumar, M. & Chuah, T.S. 2013.
Allelopathic effects of sunflower leaf extract and selected pre-emergence
herbicides on barnyardgrass. Journal of Tropical Agriculture and Food
Science 41(2): 309-318.
Ferreira-Junior, D.F., Sarmento, R.A.,
Saraiva, A. de S., Pereira, R.R., Picanço, M.C., Pestana, J.L.T. & Soares,
A.M.V.M. 2017. Low concentrations of glyphosate-based herbicide affects the
development of Chironomus xanthus. Water, Air, and Soil Pollution
228: 1-8.
Gazola, D., Zucareli, C., Ringenberg, R.,
de Oliveira, M.C.N., da Graça, J.P., de Oliveira Nunes, E. &
Hoffmann-Campo, C.B. 2019. Secondary metabolite contents in different parts of
cassava plants infested by Phenacoccus manihoti Matile-Ferrero
(Hemiptera: Pseudococcidae). Arthropod-Plant Interactions 13: 359-366.
Ghareib, H.R.A., Abdelhamed, M.S. &
Ibrahim, O.H. 2010. Antioxidative effects of the acetone fraction and vanillic
acid from Chenopodium murale on tomato plants. Weed Biology and
Management 10: 64-72.
Ghersa, C.M., Benech-Arnold, R.L., Satorre,
E.H. & Martínez-Ghersa, M.A. 2000. Advances in weed management strategies. Field
Crops Research 67: 95-104.
Gulden, R.H., Shirtliffe, S.J. & Gordon
Thomas, A. 2003. Secondary seed dormancy prolongs persistence of volunteer
canola in western Canada. Weed Science 51(6): 904-913.
Hanley, M.E. & Whiting, M.D. 2005.
Insecticides and arable weeds: Effects on germination and seedling growth. Ecotoxicology 14: 483-490.
Hodgson, J.G. & Mackey, J.M.L. 1986.
The ecological specialization of dicotyledonous families within a local flora:
Some factors constraining optimization of seed size and their possible
evolutionary significance. New Phytologist 104: 497-515.
Hong, N.H., Xuan, T.D., Eiji, T., Hiroyuki,
T., Mitsuhiro, M. & Khanh, T.D. 2003. Screening for allelopathic potential
of higher plants from Southeast Asia. Crop Protection 22: 829-836.
Idris, S., Rosnah, S., Nor, M.Z.M.,
Mokhtar, M.N. & Abdul Gani, S.S. 2020. Physicochemical composition of
different parts of cassava (Manihot esculenta Crantz) plant. Food
Research 4: 78-84.
Ismail, B.S., Tan, P.W., Chuah, T.S. &
Nornasuha, Y. 2018. Herbicidal potential of the allelochemicals from Pennisetum
purpureum Schumach. on the seedling growth of Paspalum conjugatum. Australian
Journal of Crop Science 12(2): 173-177.
Jabran, K. & Chauhan, B.S. 2015. Weed
management in aerobic rice systems. Crop Protection 78: 151-163.
Jafari, L., Moradshahi, A. & Ghadiri,
H. 2011. Allelopathic potential of rice (Oryza sativa L.) cultivars on
barnyard grass (Echinochloa crus-galli). Journal of Agricultural
Science and Technology 1: 853-864.
Jafariehyazdi, E. & Javidfar, F. 2011.
Comparison of allelopathic effects of some brassica species in two growth
stages on germination and growth of sunflower. Plant, Soil and Environment 57(2):
52-56.
Jaya Suria, A.S.M., Juraimi, A.S., Rahman,
M.M., Man, A.B. & Selamat, A. 2011. Efficacy and economics of different
herbicides in aerobic rice system. African Journal of Biotechnology 10(41):
8007-8022.
Kamran, M., Ata Cheema, Z., Farooq, M.,
Ali, Q., Anjum, M.Z. & Raza, A. 2019. Allelopathic influence of sorghum
aqueous extract on growth, physiology and photosynthetic activity of maize (Zea
mays L.) seedling. Philippine Agricultural Scientist 102(1): 33-41.
Kobayashi, K. 2004. Factors affecting
phytotoxic activity of allelochemicals in soil. Weed Biology and Management 4:
1-7.
Kordali, S., Cakir, A., Akcin, T.A., Mete,
E., Akcin, A., Aydin, T. & Kilic, H. 2009. Antifungal and herbicidal
properties of essential oils and n-hexane extracts of Achillea gypsicola Hub-Mor.
and Achillea biebersteinii Afan. (Asteraceae). Industrial Crops and
Products 29: 562-570.
Ladhari, A., Gaaliche, B.,
Zarrelli, A., Ghannem, M. & Ben Mimoun, M. 2020. Allelopathic potential and
phenolic allelochemicals discrepancies in Ficus carica L. cultivars. South
African Journal of Botany 130: 30-44.
Laosinwattana, C., Boonleom, C., Teerarak,
M., Thitavasanta, S. & Charoenying, P. 2010. Potential allelopathic effects
of Suregada multiflorum and the influence of soil type on its residue’s
efficacy. Weed Biology and Management 10: 153-159.
Li, J., He, S.Y. & Qin, X.D. 2016.
Allelopathic potential and volatile compounds of Manihot esculenta Crantz
against weeds. Allelopathy Journal 37(2): 195-206.
Liu, S., Zainuddin, I.M., Vanderschuren,
H., Doughty, J. & Beeching, J.R. 2017. RNAi inhibition of feruloyl CoA
6′-hydroxylase reduces scopoletin biosynthesis and post-harvest
physiological deterioration in cassava (Manihot esculenta Crantz)
storage roots. Plant Molecular Biology 94: 185-195.
Mangao, A.M., Arreola, S.L.B., San Gabriel,
E.V. & Salamanez, K.C. 2020. Aqueous extract from leaves of Ludwigia
hyssopifolia (G. Don) exell as potential bioherbicide. Journal of the
Science of Food and Agriculture 100: 1185-1194.
Mao, J., Yang, L., Shi, Y., Hu, J., Piao,
Z., Mei, L. & Yin, S. 2006. Crude extract of Astragalus mongholicus root
inhibits crop seed germination and soil nitrifying activity. Soil Biology
and Biochemistry 38: 201-208.
Moosavi, A., Afshari, R.T., Asadi, A. &
Gharineh, M.H. 2011. Allelopathic effects of aqueous extract of leaf, stem and
root of Sorghum bicolor on seed germination and seedling growth of Vigna
radiata L. Notulae Scientia Biologicae 3(2): 114-118.
Moreira, R.A., Freitas, J.S., da Silva
Pinto, T.J., Schiesari, L., Daam, M.A., Montagner, C.C. & Espindola, E.L.G.
2019. Mortality, spatial avoidance and swimming behavior of bullfrog tadpoles (Lithobates
catesbeianus) exposed to the herbicide diuron. Water, Air, and Soil
Pollution 230(6): 1-12.
Nakamaru, M. & Iwasa, Y. 2000. Competition
by allelopathy proceeds in traveling waves: Colicin-immune strain aids
colicin-sensitive strain. Theoretical Population Biology 57: 131-144.
Peterson, M.A., Collavo, A., Ovejero, R.,
Shivrain, V. & Walsh, M.J. 2018. The challenge of herbicide resistance
around the world: A current summary. Pest Management Science 74:
2246-2259.
Pudełko, K., Majchrzak, L. &
Narozna, D. 2014. Allelopathic effect of fibre hemp (Cannabis sativa L.)
on monocot and dicot plant species. Industrial Crops and Products 56: 191-199.
Qasem, J.R. 1995. The allelopathic effect
of three Amaranthus spp. (pigweeds) on wheat (Triticum durum). Weed
Research 35(1): 41-49.
Sodaeizadeh, H., Rafieiolhossaini, M.,
Havlík, J. & van Damme, P. 2009. Allelopathic activity of different plant
parts of Peganum harmala L. and identification of their growth
inhibitors substances. Plant Growth Regulation 59: 227-236.
Sunil, C.M., Shekara, B.G., Ashoka, P.,
Kalyana Murthy, K.N. & Madhukumar, V. 2011. Effect of integrated weed
management practices on aerobic rice (Oryza sativa L.). Research on
Crops 12: 626-628.
Take-Tsaba, A.I., Juraimi, A.S. Bin, Yusop,
M.R. Bin, Othman, R.B. & Singh, A. 2018. Weed competitiveness of some
aerobic rice genotypes. International Journal of Agriculture and Biology 20(3):
583-593.
Turk, M.A. & Tawaha, A.M. 2003.
Allelopathic effect of black mustard (Brassica nigra L.) on germination
and growth of wild oat (Avena fatua L.). Crop Protection 22:
673-677.
Uddin, M.R., Park, S.U., Dayan, F.E. &
Pyon, J.Y. 2014. Herbicidal activity of formulated sorgoleone, a natural
product of sorghum root exudate. Pest Management Science 70(2): 252-257.
Xuan, T.D., Shinkichi, T., Khanh, T.D.
& Chung, I.M. 2005. Biological control of weeds and plant pathogens in
paddy rice by exploiting plant allelopathy: An overview. Crop Protection 24(3):
197-206.
Yi, B., Hu, L., Mei, W., Zhou, K., Wang,
H., Luo, Y., Wei, X. & Dai, H., Utilization, S., Garden, B. & District,
T. 2010. Antioxidant phenolic compounds of cassava (Manihot esculenta)
from Hainan. Molecules 16: 10157-10167.
Yuliyani, E.D., Darmanti, S. & Hastuti,
E.D. 2019. Allelochemical effects of Chromolaena odorata L. against
photosynthetic pigments and stomata of Ageratum conyzoides L. leaves. Journal
of Physics: Conference Series 1217: 012149.
Zhao, D.L., Atlin, G.N., Bastiaans, L.
& Spiertz, J.H.J. 2006. Developing selection protocols for weed
competitiveness in aerobic rice. Field Crops Research 97: 272-285.
*Pengarang untuk surat-menyurat; email:
chuahts@uitm.edu.my
|