Sains Malaysiana 51(3)(2022): 775-781

http://doi.org/10.17576/jsm-2022-5103-11

 

A Combination of UV-Vis Spectroscopy and Chemometrics for Detection of Sappanwood (Caesalpinia sappan) Adulteration from Three Dyes

(Gabungan Spektroskopi UV-Vis dan Kemometrik untuk Pengesanan Pencemaran Kayu Sappan (Caesalpinia sappan) daripada Tiga Pewarna)

 

IRMANIDA BATUBARA1,2,*, SAADATUL HUSNA1, .MOHAMAD RAFI1,2, TONY SUMARYADA3, SUSUMU UCHIYAMA4, BERRY JULIANDI5, SASTIA PRAMA PUTRI4 & EIICHIRO FUKUSAKI4

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Tanjung Street, IPB Campus Dramaga, Bogor 16680, Indonesia

  2Tropical Biopharmaca Research Center, Institute of Research and Community Services, IPB University, Taman Kencana Street No. 3, IPB Campus Taman Kencana, Bogor 16128, Indonesia

  3Department of Physics, Faculty of Mathematic and Natural Sciences, IPB University, Meranti Street, IPB Campus Dramaga, Bogor 16680, Indonesia

4Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

  5Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Tanjung Street, IPB Campus Dramaga, Bogor 16680, Indonesia

 

Diserahkan: 25 Disember 2020/Diterima: 27 Julai 2021

 

Abstract

Sappan wood (Caesalpinia sappan) is very well known as a natural dye for traditional food and beverage in many countries. Recently, there are many reports of sappan wood adulteration by adding synthetic or natural dyes to obtain quality color and better appearance. In this study, UV-Vis absorption spectra coupled with chemometrics were used to develop rapid detection of sappan wood raw material adulteration (authentication) from three dyes, i.e., sudan III, commercial textile dyes, and red yeast rice. Absorption spectra of 13 sappan wood raw material and adulterated sappan wood with the three dyes in two different concentrations which resulted about 78 adulterated samples were measured with UV-Vis spectrophotometer at a wavelength range of 200-800 nm. A principal component analysis followed by discriminant analysis was used to construct a model for the authentication of sappan wood from the three dyes used in this study. The combination of both methods was successfully classified sappan wood as non-adulterated and adulterated with the dyes. Cross-validation results of the authentication model of sappan wood from sudan III, commercial textile dyes, and red yeast rice were 94.12%, 94.12%, and 92.16% correctly classified into their groups, respectively.

 

Keywords: Caesalpinia sappan; chemometrics; detection; dyes; UV-Vis spectroscopy

 

Abstrak

Kayu sappan (Caesalpinia sappan) sangat terkenal sebagai pewarna semula jadi untuk makanan dan minuman tradisi di banyak negara. Baru-baru ini, terdapat banyak laporan mengenai pemalsuan kayu sappan dengan penambahan pewarna sintetik atau semula jadi untuk mendapatkan warna yang berkualiti dan penampilan yang lebih baik. Dalam kajian ini, spektrum penyerapan UV-Vis yang digabungkan dengan kemometrik digunakan untuk pengembangan pengesanan cepat pemalsuan bahan mentah kayu sappan (pengesahan) daripada tiga pewarna, iaitu, sudan III, pewarna tekstil komersial dan beras ragi merah. Spektrum penyerapan 13 bahan mentah kayu sappan dan 78 kayu sappan yang dipalsukan dengan pewarna tersebut dalam dua kepekatan yang berbeza diukur dengan spektrofotometer UV-Vis pada jarak gelombang 200-800 nm. Analisis komponen utama diikuti dengan analisis diskriminan digunakan untuk membina model pengesahan kayu sappan daripada tiga pewarna yang digunakan dalam kajian ini. Gabungan kedua-dua kaedah tersebut berjaya mengelaskan kayu sappan sebagai tidak tercemar dan tercemar dengan pewarna. Hasil pengesahan silang model pengesahan kayu sappan daripada sudan III, pewarna tekstil komersial dan beras ragi merah didapati masing-masing ialah 94.12%, 94.12%, dan 92.16% dikelaskan dalam kumpulan mereka.

 

Kata kunci: Caesalpinia sappan; kemometrik; pengesanan; pewarna; spektroskopi UV-Vis

 

RUJUKAN

Anibal, C.D., Rodriguez, M.S. & Albertengo, L. 2014. UV-Visible spectroscopy and multivariate classification as a screening tool to identify adulteration of culinary spices with sudan I and blends of sudan I + IV Dyes. Food Analytical Methods 7: 1090-1096.

Anibal, C.D., Marta, O., Ruisanchez, I. & Callao, M.P. 2009. Determining the adulteration of spices with sudan I-II-II-IV dyes by UV-Visible spectroscopy and multivariate classification techniques. Talanta 79: 887-892.

Aroca-Santos, R., Cancilla, J.C., Matute, G. & Torrecilla, J.S. 2015. Identifying and quantifying adulterants in extra virgin olive oil of the picual varietal by absorption spectroscopy and nonlinear modeling. Journal of Agricultural and Food Chemistry 63: 5646-5652.

Baek, N., Jeon, S.G., Ahn, E., Hahn, J., Bahn, J.H., Jang, J.S., Cho, S., Park, J.K. & Choi, S.Y. 2000. Anticonvulsant compounds from the wood of Caesalpinia sappan L. Archive Pharmacal Research 23: 344-348.

Batubara, I., Mitsunaga, T. & Ohashi, H. 2010. Brazilin from Caesalpinia sappan wood as an antiacne agent. Journal of Wood Science 56: 77-81.

Bergamo, G., Seraglio, S.K.T., Gonzaga, L.V., Fett, R. & Costa, A.C.O. 2020. Use of visible spectrophotometric fingerprint and chemometric approaches for the differentiation of Mimosa scabrella Bentham honeydew honey. Journal of Food Science and Technology 57: 3966-3972.

Boggia, R., Casolino, M.C., Hysenaj, V., Oliveri, P. & Zunin, P.A. 2012. Screening method based on UV-visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juice. Food Chemistry 140: 735-741.

Brereton, R.G. 2003. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. Chichester: John Wiley & Sons.

Chemat, F., Huma, Z. & Khan, M.K. 2011. Applications of ultrasound in food technology: Processing, preservation, and extraction. Ultrasonics Sonochemistry 18: 813-835.

Gad, H.A., El-Ahmady, S.H., Abou-Shoer, M.I. & Al-Azizi, M.M. 2013. Application of chemometrics in authentication of herbal medicines: A review. Phytochemical Analysis 24: 1-24.

Huang, Z., Zhang, S., Xu, Y., Li, L. & Li, Y. 2014. Structural characterization of two new orange pigments with strong yellow fluorescence. Phytochemistry Letters 10: 140-144.

Kitdamrongtham, W., Manosroi, A., Akazawa, H., Gidado, A., Stienrut, P., Manosroi, W., Lohcharoenkal, W., Akihisa, T. & Manosroi, J. 2013. Potent anti-cervical cancer activity: Synergistic effects of Thai medicinal plants in recipe N040 selected from the MANOSROI III database. Journal of Ethnopharmacology 149: 288-296.

Lioe, H.N., Adawiyah, D.R. & Anggraeni, R. 2012. Isolation and characterization of the major natural dyestuff component of Brazilwood (Caesalpinia sappan L.). International Food Research Journal 19: 537-542.

Mukherjee, G. & Singh, S.K. 2011. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochemistry 46: 188-192.

Nirmal, N.P. & Panichayupakaranant, P. 2014. Anti-propionibacterium acnes assay-guided purification of brazilin and preparation of brazilin rich extract from Caesalpinia sappan heartwood. Pharmaceutical Biology 52: 1204-1207.

Nirmal, N.P., Rajput, M.S., Prasad, R.G.S.V. & Ahmad, M. 2015. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicines 8: 421-430.

Orwa, C., Mutua, A., Kindt, R., Jamnadas, R. & Simon, A. 2017. Agroforestree database: A tree species reference and selection guide version 4.0. http//www.worldagroforestry.org/treedb2/AFTPDFS/Caesalpinia_sappan.pdf. Accessed on 27 January 2020.

Rafi, M., Jannah, R., Heryanto, R., Kautsar, A. & Septaningsih, D.A. 2018. UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. International Food Research Journal 25: 643-648.

Rohaeti, E., Muzayanah, K., Septaningsih, D.A. & Rafi, M. 2019. Fast analytical method for authentication of chili powder from synthetic dyes using UV-Vis spectroscopy in combination with chemometrics. Indonesian Journal of Chemistry 19: 668-674.

Wang, T.H. & Lin, T.Z. 2007. Monascus rice products. Advances in Food Nutrition and Research 53: 123-158.

Wang, Y.Z., Sun, S.Q. & Zhou, Y.B. 2011. Extract of the dried heartwood of Caesalpinia sappan L. attenuates collagen-induced arthritis. Journal of Ethnopharmacology 136: 271-278.

Wu, S.Q., Otero, M., Unger, F.M., Goldring, M.B., Phrutivorapongkul, A., Chiari, C., Kolb, A., Viernstein, H. & Toegel, S. 2011. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. Journal of Ethnopharmacology 138: 364-372. 

Yodsaoue, O., Cheenpracha, S., Karalai, C., Ponglimanont, C. & Tewtrakul, S. 2009. Anti-allergic activity of principles from the roots and heartwoods of Caesalpinia sappan on antigen induced b-hexosaminidase release. Phytotherapy Research 23(7): 1028-1031.

Yudthavorasit, S., Wongravee, K. & Leepipatpiboon, N. 2014. Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chemistry 158: 101-111.

Zhong, S., Zhang, X. & Wang, Z. 2015. Preparation and characterization of yellow Monascus pigments. Separation and Purification Technology 150: 139-144.

 

*Pengarang untuk surat-menyurat; email: ime@apps.ipb.ac.id

 

 

   

sebelumnya