Sains Malaysiana 51(4)(2022): 1245-1259
http://doi.org/10.17576/jsm-2022-5104-23
Recycle Glass Waste as a Host for
Solidification of Oil Sludge
(Sisa Kaca Kitar Semula sebagai Perumah untuk Pemejalan Enap Cemar Minyak)
NUR SYUHADA IZZATI RUZALI1,
SYAZWANI MOHD FADZIL1,2*, WOOYONG UM3,4, MOHD IDZAT IDRIS1,2 & ROHYIZA BA’AN5
1Department of Applied Physics,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Nuclear Technology Research Centre,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Division of Advanced Nuclear
Engineering, Pohang University of Science and Technology (POSTECH), 77 Chongam-lo, Nam-gu, Pohang
790-784, Republic of Korea
4Division of
Environmental Science and Engineering, Pohang University of Science and
Technology (POSTECH), 77 Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea
5Waste and Environmental Technology
Division, Malaysian Nuclear Agency, 43000 Kajang,
Selangor Darul Ehsan, Malaysia
Diserahkan: 9 Jun 2021/Diterima: 7 September
2021
Abstract
The production of oil sludge per
year is more than 1 billion tonne that mainly generated from the production,
refinery, storage, and transportation of petroleum. Disposal of oil sludge had
been a great issue since the waste consists of highly concentrated of Natural
Occurring Radioactive Material (NORM). Therefore, to overcome this problem,
this study aims to investigate used and recycle borosilicate glass as a host
for solidification of oil sludge. The oil sludge and glass host were mixed into
different compositions, melted at high temperature (1,100 °C -1,200 °C) for 1 h
in alumina crucible and rapidly cooling in the room temperature, by reducing
the radioactivity levels of NORM. This study found out that, the optimum waste
loading was obtained at a range of 20-25 wt% of oil
sludge and 75-80 wt% of the glass host at 1,200 °C.
All the glass waste was produced as an amorphous phase material with small
amount of crystalline phase such as SiO2, Ba4-Al2-O7,
AlPO4, Al2O3 and Fe3Zn10,
which observed to be appeared during the cooling process. The major elements of
the glass waste were found to be distributed uniformly based on energy
dispersive X-ray spectroscopy (EDX) mapping. Furthermore, the dissolution rate
of indicator element increased due to the increase of pH solution, while the
normalized releases of B, Si, and Na during product consistency tests were low
and below the standard glass limit, which shows high durability of the glass
due to lower release of glass elements. Therefore, this study emphasized the suitability
of recycle borosilicate glass as a host for immobilization of oil sludge prior
for disposal, while deploying high temperature technology.
Keywords: Borosilicate glass;
hazardous waste; naturally occurring radioactive material (NORM); oil sludge;
vitrification process
Abstrak
Penghasilan enap cemar minyak daripada industri petroleum adalah melebihi 1 bilion tan pada setiap tahun semasa proses penghasilan, penyulingan, penyimpanan dan pengangkutan. Pelupusan enap cemar minyak telah menjadi isu besar kerana sisa enap cemar mengandungi unsur yang berbahaya. Oleh itu, bagi mengatasi masalah ini, enap cemar minyak dan sisa kaca dicampur menerusi beberapa komposisi yang berbeza dan dipanaskan pada suhu yang tinggi (1,100 °C -1,200
°C) selama 1 jam dan disejukkan pada suhu bilik bagi mengurangkan bahan berbahaya seperti radionuklid tabii (NORM). Keputusan kajian mendapati muatan sisa yang optimum adalah dalam julat 20-25 bt% enap cemar dan 75-80 bt% perumah kaca yang dipanaskan pada suhu 1,200 °C. Kesemua bentuk sisa kaca akhir mempunyai fasa amorfus dengan fasa hablur yang kecil seperti SiO2, Ba4-Al2-O7,
AlPO4, Al2O3 dan Fe3Zn10,
yang mungkin terhasil semasa proses penyejukan. Unsur utama tertabur dengan sekata menerusi pemetaan spektroskopi sinar-X penyebaran tenaga (EDX). Selain itu, kadar larutan unsur penunjuk meningkat dengan peningkatan pH larutan, manakala pembebasan ternormal oleh B, Si,
dan Na semasa ujian larut lesap adalah rendah dan di bawah had piawaian kaca, yang menunjukkan ketahanan kaca yang tinggi disebabkan pelepasan unsur kaca yang rendah. Oleh itu, kajian ini menekankan kesesuaian kaca borosilikat yang dikitar semula untuk digunakan sebagai perumah untuk memegunkan sisa enap cemar minyak sebelum dilupuskan dengan menggunakan teknologi bersuhu tinggi.
Kata kunci: Enap cemar minyak; kaca borosilikat;
proses pengacaan; radionuklid tabii (NORM); sisa berbahaya
RUJUKAN
Abdel-Sabour,
M.F. 2015. NORM in waste derived from oil and gas production. In Middle East Waste Management Summit. Promedia International Limited, Cairo. p. 25.
Abu-baker,
A.O.K., Elfaki, A.E., Osman, A.H., Elfaki, A.A.A. & Elobaid,
R.A. 2016. Measurement of activity concentration absorbed dose rate and annual
effective dose of natural occurring radioactive material (NORM) in samples
encountered during oil & gas industry. IOSR Journal of Applied Physics 8(5): 89-95.
Aida, I.S.M., Rozita, O. & Salmiaton, A. 2012. Vitrification of petrochemical sludge
containing heavy metal. SEGi Review 5(1): 89-94.
Aja, O.C., Al-Kayiem,
H.H., Zewge, M.G. & Joo,
M.S. 2016. Overview of hazardous waste management status in Malaysia. In Management of Hazardous Wastes, edited
by Saleh, H.E.M. & Rahman, R.A. London: InTech Publisher.
Al-Ghamdi,
R.A. & Sitepu, H. 2018. Characterization of
sludge deposits from refineries and gas plants: Prerequisite result
requirements to facilitate chemical cleaning of the particular equipment. International Journal of Corrosion 2018:
Article ID. 4121506.
Ali,
M.M.M., Zhao, H., Li, Z. & Maglas, N.N.M. 2019.
Concentrations of TENORMs in the petroleum industry and their environmental and
health effects. RSC Advances 9(67):
39201-39229.
Ali, A.M., Abu-Hassan, M.A.,
Ibrahim, R.R.K., Zaini, M.A.A., Abdulkarim,
B.I., Hussein, A.S., Su, S.M. & Mohd Halim,
M.A.I. 2017a. Characterization of petroleum sludge from refinery industry
biological wastewater treatment unit. The
International Journal of Engineering and Science 6(9) 61-65.
Ali, K.K., Shafik,
S.S. & Husain, H.A. 2017b. Radiological assessment of NORM resulting from
oil and gas production processing in south Rumaila oil field, southern Iraq. Iraq Journal of
Science 58(2C): 1037-1050.
Allam, K.A. & Bakr, W.F. 2015.
Assessment of the exposure dose during removal of TENORM sludge from crude oil
storage tanks. Arab Journal of Nuclear
Science and Applications 48(2): 90-93.
ASTM C-1285-14. 2002. Standard Test Methods for Determining
Chemical Durability the Product Consistency Test (PCT). West Conshohocken:
American Society for Testing and Materials (ASTM).
Awwad,
N.S., Attallah, M.F., El-Afifi, E.M., Ibrahim, H.A.
& Aly, H.F. 2015. Overview about different approaches of chemical treatment
of NORM and TE-NORM produced Oil exploitation. In Advances in Petrochemicals, edited by Patel, V. London: InTech Publisher. pp. 85-113.
Bakr, M.A., Elattar,
A.L., Salama, S., Ahmed, M.H. & Zahran, E.M. 2018. NAA for trace elemental
analysis of sludge samples from different oil sites in the Egyptian eastern
desert. Journal of Radiation and Nuclear
Application 3(3): 163-170.
Bakr, W.F. 2010. Assessment of
radiological impact of oil refining industry.
Journal of Environmental Radioactivity 101(3): 237-243.
Bakri,
J. & Siregar, R. 2003. Radiation and
radioactivity levels survey of naturally occurring radioactive materials (NORM)
at PT Caltex Pacific Indonesia. In Proceedings
of the Seminar on Environmental and Radiation Safety Aspect at Non-Nuclear
Industry 42: 15-25.
Bednarek,
J., Ptacek, P., Svec, J., Soukal, F. & Parizek, L.
2016. Inhibition of hydrogen evolution in aluminium-phosphate refractory
binders. Procedia Engineering 151:
87-93.
Canoba,
A.C., Gnoni, G.A. & Truppa,
W.A. 2007. NORM measurements in the oil and gas industry in Argentina. In 5th International Symposium on
Naturally Occurring Radioactive Material. p. 33.
Chen, S., Shu, X., Tang, H., Mao,
X., Xu, C. & Lu, X. 2019. Microwave sintering of uranium-contaminated soil
for nuclear test and chemical stability. Ceramics
International 45(10): 13334-13339.
Darko,
E.O., Kpeglo, D.O., Akaho,
H., Schandorf, C., Adu, P., Faanu, A., Abankwah, E., Lawluvi, H. & Awudu, R. 2012.
Radiation doses and hazards from processing of crude oil at the Tema oil refinery in Ghana. Radiation Protection Dosimetry 148(3): 318-328.
Fadzil,
S.M., Hrma, P., Schweiger, M.I. & Riley, B.J.
2015. Liquids temperature and chemical durability of selected glasses to
immobilize rare earth oxides waste. Journal
of Nuclear Materials 465: 657-663.
Farid, O.M., Ojovan,
M.I., Massoud, A. & Abdel Rahman, R.O. 2019.
Assessment of initial leaching characteristics of alkali-borosilicate glasses
for nuclear waste immobilization materials. Materials 12(9): 1462.
Frankel, G.S., Vienna, J.D., Lian,
J., Scully, J.R., Gin, S., Ryan, J.V., Wang, J., Kim, S.H., Windl,
W. & Du, J. 2018. A comparative review of the aqueous corrosion of glasses,
crystalline ceramics and metals. Npj Materials
Degradation 2(15): 1-17.
Garner,
J., Cairns, J. & Read, D. 2017. NORM in the East Midlands' oil and gas
producing region of the UK. Journal of
Environmental Radioactivity 150: 49-56.
Gopang,
I.A., Mahar, A.S., Akhtar, K.S., Omer, M. & Azeem, M.S. 2016.
Characterization of the sludge deposits in crude oil storage tanks. Journal of Faculty of Engineering and Technology 23(1): 57-64.
Hasanuzzaman,
M., Rafferty, A., Sajja, M. & Olabi,
A.G. 2016. Properties of glass materials. In Reference Module in Materials Science and Materials Engineering,
edited by Sereni, J.G.R. Amsterdam: Elsevier.
Hu, G., Li, J. & Zeng, G. 2013.
Recent development in the treatment of oily sludge from petroleum industry: A
review. Journal of Hazardous Materials 261: 470-490.
Hui, K., Tang, J., Lu, H., Xi, B.,
Qu, C. & Li, J. 2020. Status and prospect of oil recovery from oily sludge:
A review. Arabian Journal of Chemistry 13(8): 6523-6543.
IAEA. 1996. Measurement of Radionuclides in Food and the Environment. Vienna:
International Atomic Energy Agency (IAEA).
Iwaszko,
J., Zawada, A., Prezerada, I. & Lubas, M. 2018. Structural and microstructural aspects of
asbestos-cement waste vitrification. Spectrochimica Acra Part A; Molecular and Biomolecular Spectroscopy 195: 95-102.
Jain, V. 2019. Chemical Durability of Nuclear Waste Glasses-A Review. Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute. San
Antonio, Texas: United States Nuclear Regulatory Commission.
Johnson, O.A. & Affam, A.C. 2019. Petroleum sludge treatment and disposal:
A review. Environment Engineering
Research 24(2): 191-201.
Johnson, O.A., Madzlan,
N., Kamaruddin, I. & Oloruntobi,
O.O. 2015. Building blocks from petroleum sludge: Leachability and toxicity
studies. International Journal of Applied
Engineering Research 10(24): 45479-45481.
Karaahmet,
O. & Cicek, B. 2019. Waste recycling of cathode
ray tube glass through industrial production of transparent ceramic frits. Journal of the Air & Waste Management
Association 69(10): 1258-1266.
Kim, M., Corkhill, C.L., Hyatt, N.C.
& Heo, J. 2018. Development, characterization,
and dissolution behavior of calcium-aluminoborate glass wasteform to
immobilize rare-earth oxides. Scientific
Reports 8(1): 1-8.
Kim, M., Kim, H.G., Kim, S., Yoon,
J.H., Sung, J.Y., Jin, J.S., Lee, M.H., Kim, C.W., Heo, J. & Hong, K.S. 2020. Leaching behaviors and mechanisms of vitrified forms for the low-level radioactive solid wastes. Journal of Hazardous Materials 384:
121296.
Lonergan, C.E. & Neeway, J.J. 2017. A Critical Review of Ion Exchange in
Nuclear Waste Glasses to Support the Immobilized Low-Activity
Waste Integrated Disposal Facility Rate Model. United States:
Pacific Nortwest National Laboratory.
Manaktala,
H.K. 1992. An Assessment of Borosilicate
Glass as a High-Level Waste Form. Texas: Center for Nuclear Regulatory Analyses San Antonia.
Meegoda,
J.N., Ezeldin, A.S., Fang, H.Y. & Inyang, H.I.
2003. Waste immobilization technologies. Practice
Periodical of Hazardous, Toxic and Radioactive Waste Management 7(1):
46-58.
Meor,
Y.M.S., Hishamuddin, H. & Choo, T.F. 2007.
Characterization study of oil sludge solid sediment. Journal of Nuclear and Related Technologies 4(1-2): 25-28.
Misra,
V. & Pandey, S.D. 2005. Hazardous waste, impact on health and environment
for development of better waste management strategies in future in India. Environment International 31(3):
417-431.
Mykowska, A. & Hupka,
J. 2014. Natural radioactivity of solid and liquid phases from shale oil and
gas prospecting in Pomerania. Polish
Journal of Environmental Studies 23(6): 2137-2142.
Nada, F.K. & Omer, H.A. 2016.
Measurement of natural radioactivity in al-Dora refinery by using (HPGe) detector.
Advance in Applied Science Research 7(4): 197-208.
Nuha,
T.A. 2012. Determination of pollutant elements and heavy metals in petroleum
sludge and scale at Heglig Field, Sudan. Sudan Academy of Science. Masters Thesis. (Unpublished).
Ojovan,
M.I. & Batyukhnova, O.G. 2007. Glasses for
Nuclear Waste Immobilization. In 2007
Waste Management Symposium. Tucson, AZ. February 25 - March 1.
Ojovan,
M.I., Petrov, V.A. & Yudintsev, S.V. 2021. Glass
crystalline materials as advanced nuclear wasteforms. Sustainability 13(8): 4117.
Ojovan,
N.V., Startceva, L.V., Barinov, A.S., Ojovan, M.I., Bacon, D.H., McGrail, B.P. & Vienna, J.D.
2004. Product consistency test of fully radioactive high-sodium content
borosilicate glass K-26. Materials
Research Society 824: 1-6.
Oniki,
T., Nabemoto, T. & Fukui, T. 2018. Vitrification
technology for treating low-level waste from nuclear facilities. IHI Engineering Review 51(1): 25-31.
Pei, S.L., Chen, T.L., Pan, S.Y.,
Yang, Y.L., Sun, Z.H. & Li, Y.L. 2020. Addressing environmental
sustainability of plasma vitrification technology for stabilization of
municipal solid waste incineration fly ash. Journal
of Hazardous Materials 398: 122959.
Philemon, Z.B., Martin, B.N. &
Christelle, S.J.E. 2016. Characterization of oily sludge from Cameroon
petroleum refinery. International Journal
of Emerging Engineering Research and Technology 4(3): 34-38.
Puad,
M.H.A. & Noor, M.M.Y. 2003. Behaviours of 232Th, 238U, 228Ra and 226Ra on combustion of crude oil terminal
sludge. Journal of Environmental
Radioactivity 73(3): 289-305.
Rani, N., Shrivastava, J.P. & Bajpa, R.K. 2010. Corrosion mechanism in the obsidian and
its comparison with waste glass for long-term performance assessment in the
geological repository. The Open Corrosion
Journal 3(1): 16-27.
Ruzali,
N.S.I., Alwi, N., Idris, M.I., Mohd Fadzil, S. & Ba’an, R.
2021. Pemegunan bahan radioaktif dalam enap cemar minyak menggunakan kaca sebagai kaedah alternatif. Sains Malaysiana 50(8): 2419-2431.
Shakhatreh,
S. 2015. Properties and suitability of east Aqaba area feldspar for glass
industries in Jordan. Journal of
Materials Science Research 4(2): 22-33.
Shu, X., Li, Y., Huang, W., Chen,
S., Xu, C., Zhang, S., Li, B., Wang, X., Qing, Q. & Lu, X. 2020. Rapid
vitrification of uranium-contaminated soil: Effect and mechanism. Environmental Pollution 263: 114539.
Stefan, R., Culea, E. & Pascuta, P. 2012.
The effect of copper ions addition on structural and optical properties of zinc
borate glasses. Journal of
Non-Crystalline Solids 358(4): 839-846.
Stoyanova, L.T., Fraga, D., Barrachina, E., Calvet, I. & Carda, J.B. 2019. Vitrification and sinter-crystallization
of fly ash with glass cullet. Material
Science & Engineering International Journal 3(5): 189-193.
USEPA. 2021. Radiation Health Effect. United States: United States Environmental
Protection Agency (USEPA).
USEPA. 2017. Leaching Environmental Assessment Framework (LEAF) How-to Guide. United
States: United States Environmental Protection Agency (USEPA).
USEPA. 1996. SW-846 Test Method 3052. United States: United
States Environmental Protection Agency (USEPA).
Vienna, J.D. & Spearing, D.R.
2003. Environmental Issue and Waste
Management Technologies in the Ceramic and Nuclear Industries IX. Hoboken:
Wiley.
Xhixha, G., Baldoncini,
M., Callegari, I., Colonna, F., Hasani,
F., Mantovani, F., Shala, F., Strati, V. & Kaceli, M.X. 2015. A century of oil and gas exploration in
Albania: Assessment of naturally occurring radioactive materials (NORMs). Chemosphere 139: 30-39.
Zakariya, N.I. & Kahn, M. 2014.
Benefits and biological effects of ionizing radiation. Scholars Academic Journal of Biosciences 2(9): 583-591.
*Pengarang untuk surat-menyurat;
email: syazwanimf@ukm.edu.my
|