Sains Malaysiana 51(5)(2022): 1325-1337

http://doi.org/10.17576/jsm-2022-5105-05

 

Comparing Manuka and Other Medical Honeys as Adjunct to Antibiotic Therapy against Facultative Anaerobes
(Membandingkan Madu Manuka dan Madu Perubatan yang Lain sebagai Adjung kepada Terapi Antibiotik terhadap Anaerob Fakultatif)

 

JUSTUS THOMAS OBIAJULU SIEVERS1,2, EMILY MOFFAT2, KHADIJAH YUSUF2, NABAA SARWAR2, ANOM BOWOLAKSONO1,3* & LORNA FYFE2

 

1Graduate School of Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia

2Department of Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Edinburgh, United Kingdom

3Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

Depok 16424, Indonesia

 

Diserahkan: 3 November 2020/Diterima: 21 September 2021

 

ABSTRACT

The development of antibiotic resistance in pathogenic bacteria has created a push for new treatments, with honeys (especially Manuka) becoming a common focus due to their strong antimicrobial action. However, alternatives to Manuka are necessary, as its production is vulnerable. Additionally, research is lacking on how honey affect facultative anaerobic bacteria grown in anaerobic conditions and how honey and antibiotics interact in these conditions. In order to understand these interactions and find novel honey candidates, we investigated the antibacterial effects of four honeys (two Manuka, one Chilean and one Santa Cruz honeydew honey) against Staphylococcus aureus and Pseudomonas aeruginosa grown aerobically and anaerobically in broth cultures, and how the honeys affected the action of common antibiotics against these bacteria using agar diffusion assays. We found all honeys to be highly effective at 75% honey, with no significant differences between honeys, showing that other honeys were suitable alternatives to Manuka at such high concentrations. At 20%, oxygen availability and bacterial species impacted the effectiveness of honeys as Santa Cruz honey was most effective aerobically but failed anaerobically, while Manuka honeys were effective against S. aureus but not P. aeruginosa in both conditions, and Chilean honey was ineffective against all samples. The addition of honey increased bacterial sensitivity to antibiotics in some cases, varying with aerobic conditions. The antibacterial activity of the honeys, and differences in conditions whether aerobically or anaerobically, were not correlated with pH, antioxidant capacity or total phenolic count. Since in all cases honeys were either beneficial or of no effect, these results supported the use of honey as adjunct to antibiotic therapy in scenarios such as on bandages, with honeys other than Manuka also being worth consideration.

 

Keywords: Antibiotic resistance; honey; Manuka; Pseudomonas aeruginosa; Staphylococcus aureus

 

ABSTRAK

Perkembangan kerintangan antibiotik oleh bakteria patogen telah mendorong penekanan untuk rawatan baru dengan madu (terutama Manuka) menjadi tumpuan umum disebabkan tindakan antimikrobnya yang kuat. Walau bagaimanapun, alternatif untuk Manuka diperlukan kerana pengeluarannya yang tidak terjamin. Selain itu, penyelidikan mengenai bagaimana madu mempengaruhi bakteria anaerob fakultatif yang tumbuh dalam keadaan anaerob serta bagaimana madu dan antibiotik berinteraksi dalam keadaan ini adalah masih kurang. Untuk memahami interaksi ini dan mencari calon madu yang baharu, kami mengkaji kesan antibakteria bagi empat madu (dua Manuka, satu madu Chile dan satu madu Santa Cruz) terhadap Staphylococcus aureus dan Pseudomonas aeruginosa yang tumbuh secara aerobik serta anaerobik dalam kultur kaldu dan bagaimana madu mempengaruhi tindakan antibiotik biasa terhadap bakteria ini menggunakan ujian penyerapan agar. Kami mendapati semua madu sangat berkesan pada 75% madu, tanpa perbezaan yang signifikan antara madu, menunjukkan bahawa madu lain adalah alternatif yang sesuai untuk Manuka pada kepekatan tinggi. Pada kepekatan 20%, kehadiran oksigen dan spesies bakteria mempengaruhi keberkesanan madu kerana madu Santa Cruz paling berkesan secara aerobik tetapi gagal secara anaerob, sementara madu Manuka berkesan terhadap S. aureus tetapi tidak berkesan ke atas P. aeruginosa dalam kedua-dua keadaan dan madu Chile tidak berkesan terhadap semua sampel. Penambahan madu meningkatkan kesensitifan bakteria terhadap antibiotik dalam beberapa kes, berbeza dengan keadaan aerobik. Aktiviti antibakteria madu dan perbezaan keadaan sama ada aerobik atau anaerob, tidak berkorelasi dengan pH, kapasiti antioksidan atau jumlah fenol. Oleh kerana dalam semua kes madu adalah sama ada bermanfaat atau tidak mempunyai sebarang kesan, hasil ini menyokong penggunaan madu sebagai tambahan kepada terapi antibiotik dalam senario seperti aplikasi di atas bahan pembalut, serta mempertimbangkan madu selain daripada Manuka.

 

Kata kunci: Kerintangan antibiotik; madu; Manuka; Pseudomonas aeruginosa; Staphylococcus aureus

 

RUJUKAN

Al-Waili, N.S. & Saloom, K.Y. 1999. Effects of topical honey on post-operative wound infections due to gram positive and gram negative bacteria following caesarean sections and hysterectomies. European Journal of Medical Research 4(3): 126-130.

Bailey, J.S., Reagan, J.O., Cox, N.A. & Thomson, J.E. 1984. Comparison of aerobic and anaerobic incubation conditions for optimal recovery of Salmonella. Journal of Food Protection 47(8): 615-617.

Bang, L.M., Buntting, C. & Molan, P. 2003. The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. The Journal of Alternative and Complementary Medicine 9(2): 267-273.

Benzie, I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239(1): 70-76.

Blair, S.E., Cokcetin, N.N., Harry, E.J. & Carter, D.A. 2009. The unusual antibacterial activity of medical-grade Leptospermum honey: Antibacterial spectrum, resistance and transcriptome analysis. European Journal of Clinical Microbiology & Infectious Diseases 28(10): 1199-1208.

Blasa, M., Candiracci, M., Accorsi, A., Piacentini, M.P., Albertini, M.C. & Piatti, E. 2006. Raw Millefiori honey is packed full of antioxidants. Food Chemistry 97(2): 217-222.

Bowler, P.G., Duerden, B.I. & Armstrong, D.G. 2001. Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews 14(2): 244-269.

Bulman, S.E.L., Tronci, G., Goswami, P., Carr, C. & Russell, S.J. 2017. Antibacterial properties of nonwoven wound dressings coated with Manuka honey or methylglyoxal. Materials 10(8): 954.

Chaudhry, N. & Mukherjee, T.K. 2016. Differential effects of temperature and pH on the antibiotic resistance of pathogenic and non-pathogenic strains of Escherichia coli. International Journal of Pharmacy and Pharmaceutical Sciences 8(9): 146.

Dunford, C.E. & Hanano, R. 2004. Acceptability to patients of a honey dressing for non-healing venous leg ulcers. Journal of Wound Care 13(5): 193-197.

Fidaleo, M., Zuorro, A. & Lavecchia, R. 2011. Antimicrobial activity of some Italian honeys against pathogenic bacteria. Chemical Engineering Transactions 24: 1015-1020.

Gallardo-Chacón, J.J., Caselles, M., Izquierdo-Pulido, M. & Rius, N. 2008. Inhibitory activity of monofloral and multifloral honeys against bacterial pathogens. Journal of Apicultural Research 47(2): 131-136.

Greenwood, D. 2010. Sulfonamides. In Antibiotic and Chemotherapy. 9th ed. London: Saunders Elsevier. pp. 337-343.

Grey, D. & Hamilton-Miller, J.M.T. 1977. Sensitivity of Pseudomonas aeruginosa to sulphonamides and trimethoprim and the activity of the combination trimethoprim: Sulphamethoxazole. Journal of Medical Microbiology 10(3): 273-280.

Hayes, G., Wright, N., Gardner, S.L., Telzrow, C.L., Wommack, A.J. & Vigueira, P.A. 2018. Manuka honey and methylglyoxal increase the sensitivity of Staphylococcus aureus to linezolid. Letters in Applied Microbiology 66(6): 491-495.

Henriques, A.F., Jenkins, R.E., Burton, N.F. & Cooper, R.A. 2009. The intracellular effects of manuka honey on Staphylococcus aureus. European Journal of Clinical Microbiology & Infectious Diseases 29(1): 45.

Irwin, N.J., McCoy, C.P. & Carson, L. 2013. Effect of pH on the in vitro susceptibility of planktonic and biofilm-grown Proteus mirabilis to the quinolone antimicrobials. Journal of Applied Microbiology 115(2): 382-389.

Jenkins, R.E. & Cooper, R. 2012a. Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin. Journal of Antimicrobial Chemotherapy 67(6): 1405-1407.

Jenkins, R.E. & Cooper, R. 2012b. Improving antibiotic activity against wound pathogens with Manuka honey in vitro. PLoS ONE 7(9): e45600.

Kaškonienė, V., Maruška, A., Kornyšova, O., Charczun, N., Ligor, M. & Buszewski, B. 2009. Quantitative and qualitative determination of phenolic compounds in honey. Cheminė Technologija 3(52): 1-7.

Kogut, M., Lightbrown, J.W. & Isaacson, P. 1965. Streptomycin action and anaerobiosis. Microbiology 39(2): 155-164.

Kwakman, P.H.S., de Boer, L., Ruyter-Spira, C.P., Creemers-Molenaar, T., Helsper, J.P.F.G., Vandenbroucke-Grauls, C.M.J.E., Zaat, S.A.J. & te Velde, A.A. 2011a. Medical-grade honey enriched with antimicrobial peptides has enhanced activity against antibiotic-resistant pathogens. European Journal of Clinical Microbiology & Infectious Diseases 30(2): 251-257.

Kwakman, P.H.S., te Velde, A.A., de Boer, L., Vandenbroucke-Grauls, C.M.J.E. & Zaat, S.A.J. 2011b. Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS ONE 6(3): e17709.

Liu, M., Lu, J., Müller, P., Turnbull, L., Burke, C.M., Schlothauer, R.C., Carter, D.A., Whitchurch, C.B. & Harry, E.J. 2015. Antibiotic-specific differences in the response of Staphylococcus aureus to treatment with antimicrobials combined with Manuka honey. Frontiers in Microbiology 5: 779.

Lu, J., Turnbull, L., Burke, C.M., Liu, M., Carter, D.A., Schlothauer, R.C., Whitchurch, C.B. & Harry, E.J. 2014. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2: e326.

Meng, J., Hu, B., Liu, J., Hou, Z., Meng, J., Jia, M. & Luo, X. 2006. Restoration of oxacillin susceptibility in methicillin-resistant Staphylococcus aureus by blocking the mecr1-mediated signaling pathway. Journal of Chemotherapy 18(4): 360-365.

Molan, P.C. 2006. The evidence supporting the use of honey as a wound dressing. The International Journal of Lower Extremity Wounds 5(1): 40-54.

Okoro, P., Coyle, S. & Fyfe, L. 2015. Influence of subinhibitory concentrations of honey on toxic shock syndrome toxin -1 (TSST-1) production by two strains of Staphylococcus aureus. Food Science and Technology 3(2): 29-36.

Packer, J.M., Irish, J., Herbert, B.R., Hill, C., Padula, M., Blair, S.E., Carter, D.A. & Harry, E.J. 2012. Specific non-peroxide antibacterial effect of Manuka honey on the Staphylococcus aureus proteome. International Journal of Antimicrobial Agents 40(1): 43-50.

Public Health England. 2015. Health Matters: Antimicrobial Resistance. https://www.gov.uk/government/publications/health-matters-antimicrobial-resistance/health-matters-antimicrobial-resistance

Salonen, A., Virjamo, V., Tammela, P., Fauch, L. & Julkunen-Tiitto, R. 2017. Screening bioactivity and bioactive constituents of Nordic unifloral honeys. Food Chemistry 237: 214-224.

Schlessinger, D. 1988. Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clinical Microbiology Reviews 1(1): 54-59.

Schlünzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A. & Franceschi, F. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413(6858): 814-821.

Schneider, M., Coyle, S., Warnock, M., Gow, I. & Fyfe, L. 2013. Anti-microbial activity and composition of Manuka and Portobello honey. Phytotherapy Research 27(8): 1162-1168.

Stagos, D., Soulitsiotis, N., Tsadila, C., Papaeconomou, S., Arvanitis, C., Ntontos, A., Karkanta, F., Adamou‑Androulaki, S., Petrotos, K., Spandidos, D.A., Kouretas, D. & Mossialos, D. 2018. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. International Journal of Molecular Medicine 42(2): 726-734.

Subramanian, R., Hebbar, H.U. & Rastogi, N.K. 2007. Processing of honey: A review. International Journal of Food Properties 10(1): 127-143.

Udo, E. & Grubb, W.B. 1995. Genetics of streptomycin resistance in methicillin-sensitive multiply-resistant Staphylococcus aureus. Journal of Chemotherapy 7(1): 12-15.

van Overbeek, L.S., Wellington, E.M.H., Egan, S., Smalla, K., Heuer, H., Collard, J.M., Guillaume, G., Karagouni, A.D., Nikolakopoulou, T.L. & van Elsas, J.D. 2002. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiology Ecology 42(2): 277-288.

World Health Organization. 2018. High Levels of Antibiotic Resistance Found Worldwide, New Data Shows. http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/

World Health Organization. 2020. Antimicrobial Resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Zbuchea, A. 2014. Up-to-date use of honey for burns treatment. Annals of Burns and Fire Disasters 27(1): 22-30.

Zumla, A. & Lulat, A. 1989. Honey, a remedy rediscovered. Journal of the Royal Society of Medicine 82(7): 384-385.

Zwietering, M.H., Jongenburger, I., Rombouts, F.M. & van’t Riet, K. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology 56(6): 1875-1881.

 

*Pengarang untuk surat-menyurat; email: alaksono@sci.ui.ac.id

 

 

 

     

sebelumnya