Sains Malaysiana
51(5)(2022): 1399-1410
http://doi.org/10.17576/jsm-2022-5105-11
Penghasilan Selulosa Bakteria daripada Kordial Minuman Tamat
Tempoh dan Potensi Pengunaannya sebagai Gel Selulosa Anti-Pemerangan
(Production of Bacterial Cellulose from Expired Cordial
Beverages and Their Potential Use as Anti-Bright Cellulose Gel)
FABIANA FRANCIS1, ZUR AIN AQILLAH BINTI ZAKI1 & NURUL AQILAH MOHD ZAINI1,2,*
1Department of Food Sciences, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 3 September 2021/Diterima: 7 Oktober 2021
ABSTRAK
Selulosa adalah polimer karbohidrat yang
mudah diperoleh daripada sumber tumbuhan dan dihasilkan melalui proses
fermentasi pelbagai jenis bakteria seperti Komagataeibacter xylinus. Walau
bagaimanapun, selulosa bakteria mempunyai ketulenan dan kapasiti pegangan air
yang lebih tinggi berbanding selulosa daripada sumber tumbuhan dan oleh itu, ia
mempunyai potensi untuk digunakan sebagai gel selulosa aktif dalam industri
makanan seperti gel anti-pemerangan. Minuman kordial yang telah tamat tempohnya
merupakan media fermentasi yang baik bagi penghasilan selulosa bakteria kerana
mengandungi kandungan gula yang tinggi dan sekaligus mengurangkan masalah
pengurusan sisa minuman. Oleh itu, objektif kajian ini adalah untuk
menghasilkan selulosa bakteria sebagai gel anti-pemerangan daripada minuman
kordial yang yang telah tamat tempohnya dalam model jus epal segar. Tahap
pertama kajian adalah membandingkan penghasilan selulosa bakteria daripada
minuman kordial yang sudah tamat tempohnya tanpa dan dengan penambahan ekstrak
yis. Hasil kajian menunjukkan minuman kordial dengan penambahan yis
menghasilkan berat selulosa basah tertinggi iaitu 140 g/L, penurunan nilai pH
sebanyak 1.72 dan penurunan kepekatan gula dan protein sebanyak 12.44 mg/mL dan
0.93 mg/mL selepas 14 hari fermentasi. Gel selulosa yang dihasilkan kemudiannya
digunakan sebagai gel anti-pemerangan (penambahan 0.1% asid askorbik) pada
peringkat kedua kajian ini. Hasil kajian menunjukkan bahawa indeks pemerangan
dalam jus epal yang mengandungi gel selulosa anti-pemerangan telah berjaya
mencegah pemerangan dalam jus epal segar (15.01) berbanding dengan indeks
pemerangan dalam jus epal kawalan (25.58). Kesimpulannya, selulosa bakteria
dapat dihasilkan daripada minuman kordial yang telah tamat tempohnya dan
berpotensi sebagai gel anti-pemerangan bagi mengurangkan pemerangan enzim dalam
jus epal segar.
Kata kunci: Gel anti-pemerangan; Komagataeibacter
xylinus; minuman kordial tamat tempoh; selulosa bakteria
ABSTRACT
Cellulose is a carbohydrate polymer that
is readily available from plant and produced by variety of bacteria such as Komagataeibacter
xylinus through fermentation. However, bacterial cellulose has higher
purity and water holding capacity than plant-based cellulose and can
potentially be used as an active gel in food applications such as anti-browning
gel. Expired cordial drinks could be an excellent fermentation medium for
bacterial cellulose production due to its high sugar content and simultaneously
mitigate wastewater issues. Therefore, the objective of this research was to
produce bacterial cellulose as anti-browning gels from expired cordial drinks
in fresh apple juice model system. The first stage of the study was to compare
the production of bacterial cellulose from expired cordial drinks without and
with the addition of yeast extract. Results of cordial with the addition of
yeast extract showed the highest wet weight of cellulose with 140 g/L,
decreased in pH value by 1.72, and decreased of sugar and protein
concentrations by 12.44 mg/mL and 0.93 mg/mL, respectively, after 14 days. The
produced cellulose pellicle was then used as anti-browning gel (addition of 0.1
% ascorbic acid) in the second stage of this study. Results showed that the
browning index in apple juice containing
the anti-browning cellulose gel has successfully prevented browning in apple
juice (15.01) compared to the browning index in a control apple juice (25.58).
In conclusion, bacterial cellulose can be produced from expired cordial drinks
and has potential as an anti-browning gel to reduce enzymatic browning in fresh
apple juice.
Keywords: Anti-browning gel;
bacterial cellulose; expired cordial drinks; Komagataeibacter xylinus
RUJUKAN
Ali, H., El-Gizawy, A., El-bassiouny, R.
& Saleh, M. 2014. Browning inhibition mechanisms by cysteine, ascorbic acid
and citric acid, and identifying PPO-catechol-cysteine reaction products. Journal
of Food Science Technology 52(6): 3651-3659.
Alabbosh, K.F.S., Hazrin Chong, N.H.
& Al Balawi, A.N. 2021. Agricultural wastes as a carbon or nitrogen source
for production of bacterial cellulose. A mini review. Poll. Res. 40(2):
429-437.
AL-Kalifawi, E. & Hassan, I.A. 2014.
Factors influence on the yield of bacterial cellulose of kombucha (khubdat
humza). Baghdad Science Journal 11(3): 1420-1428.
Al Qadr Imad Wan-Mohtar, W.A.,
Halim-Lim, S.A., Balamurugan, J.P., Saad, M.Z.M., Azizan, N.A.Z., Jamaludin,
A.A. & Ilham, Z. 2021. Effect of sugar-pectin-citric acid pre-commercialization
formulation on the physicochemical, sensory, and shelf-life properties of musa
Cavendish banana jam. Sains Malaysiana 50(5): 1329-1342.
Andritsou, V., De Melo, E.M., Tsouko,
E., Ladakis, M., Maragkoudaki, S., Koutinas, A.A. & Matharu, A.S. 2018. Synthesis
and characterization of bacterial cellulose from citrus-based sustainable
resources. ACS Omega 3(8): 10365-10373.
Aswini, K., Gopal, N.O. & Uthandi,
S. 2020. Optimized culture conditions for bacterial cellulose production by Acetobacter
senegalensis MA1. BMC Biotechnology 20(1): 1-16.
Betlej, I., Zakaria, S., Krajewski, K.J.
& Boruszewski, P. 2021. Bacterial cellulose-properties and its potential
application. Sains Malaysiana 50(2): 493-505.
Costa, A.F.S., Almeida, F.C.G., Vinhas,
G.M. & Sarubbo, L.A. 2017. Production of bacterial cellulose by Gluconacetobacter
hansenii using corn steep liquor as nutrient sources. Frontiers in
Microbiology 8: 2027.
Diedrich, J.K. & Julian, R.R. 2010.
Site-selective fragmentation of peptides and proteins at quinone-modified
cysteine residues investigated by ESI-MS. Analytical Chemistry 82(10):
4006-4014.
El, S., Koraichi, S., Latrache, H. &
Hamadi, F. 2012. Scanning electron microscopy (SEM) and environmental SEM:
Suitable tools for study of adhesion stage and biofilm formation. Scanning
Electron Microscopy 13(6): 163-166.
Garg, M. 2019. Treatment and recycling
of wastewater from beverages/the soft drink bottling industry. In Advances
in Biological Treatment of Industrial Waste Water and their Recycling for a
Sustainable Future. Singapore. Springer. pp. 333-361.
Goh, W.N., Rosma, A., Kaur, B., Fazilah,
A., Karim, A.A. & Bhat, R. 2012. Fermentation of black tea broth
(kombucha): I. effects of sucrose concentration and fermentation time on the
yield of microbial cellulose. International Food Research Journal 19(1):
109-117.
Jagannath, A., Kalaiselvan, A.,
Manjunatha, S.S., Raju, P.S. & Bawa, A.S. 2008. The effect of pH, sucrose
and ammonium sulphate concentrations on the production of bacterial cellulose
(Nata-de-coco) by Acetobacter xylinum. World Journal of Microbiology
and Biotechnology 24(11): 2593-2599.
Kaanane, A. & Labuza, T.P. 2012.
Time and temperature effect on stability of Moroccan processed orange juice
during storage. Journal of Food Science 53(5): 1470-1473.
Kurosumi, A., Sasaki, C., Yamashita, Y.
& Nakamura, Y. 2009. Utilization of various fruit juices as carbon source
for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers 76(2): 333-335.
Lazim, A.M., Osman, A.H. & Mokhtarom,
M. 2018. Absorption ability of gamma irridiated bacterial cellulose hydrogel
using Langmuir and Freundlich isotherme. Sains Malaysiana 47(4):
715-723.
Lee, K.Y., Buldum, G., Mantalaris, A.
& Bismarck, A. 2020. More than meets the eye in bacterial cellulose:
Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular
Bioscience 14(1): 10-32.
Li, Z., Chen, S.Q., Cao, X., Li, L.,
Zhu, J. & Yu, H. 2021. Effect of pH buffer and carbon metabolism on the
yield and mechanical properties of bacterial cellulose produced by Komagataeibacter
hansenii ATCC 53582. Journal of Microbiology and Biotechnology 31(3):
429-438.
Mæhre, H.K., Dalheim, L., Edvinsen,
G.K., Elvevoll, E.O. & Jensen, I.J. 2018. Protein determination method
matters. Foods 7(1): 16-22.
Mansor, N., Ramli, S., Azhari, S.H.
& Abd Rahim, M.H. 2020. Effects of different preservation treatments on
nutritional profile on juices from different sugar cane varieties. Sains
Malaysiana 49(2): 283-291.
Masuko, T., Minami, A., Iwasaki, N.,
Majima, T., Nishimura, S.I. & Lee, Y.C. 2005. Carbohydrate analysis by a
phenol-sulfuric acid method in microplate format. Analytical Biochemistry 339(1):
69-72.
Matsuoka, M., Tsuchida, T., Matsushita,
K., Adachi, O. & Yoshinaga, F. 2005. A synthetic medium for bacterial
cellulose production by Acetobacter xylinum subsp. sucrofermentans. Bioscience. Biotechnology, and Biochemistry 60(4): 575-579.
Matsuo, Y., Miura, L.A., Araki, T. &
Yoshie-Stark, Y. 2019. Proximate composition and profiles of free amino acids,
fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food
Chemistry 279: 356-363.
Moniri, M., Moghaddam, A.B., Azizi, S.,
Rahim, R.A., Ariff, A.B., Saad, W.Z., Navaderi, M. & Mohamad, R. 2017.
Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7(9): 1-26.
Naomi, R., Idrus, R.B.H. & Fauzi,
M.B. 2020. Plant-vs. Bacterial-derived cellulose for wound healing: A review. International
Journal of Environmental Research and Public Health 17(18): 1-25.
Naritomi, T., Kouda, T., Yano, H. &
Yoshinaga, F. 1998. Effect of lactate on bacterial cellulose production from
fructose in continuous culture. Journal of Fermentation and Bioengineering 85(1):
89-95.
Pa’e, N., Zahan, K.A. & Muhamad, I.I. 2011.
Production of biopolymer from Acetobacter xylinum using different
fermentation methods. International Journal of Engineering & Technology 11(5):
90-98.
Quijano, L. 2017. Embracing bacterial cellulose as a
catalyst for sustainable fashion. Liberty University. Ph.D. Thesis
(Unpublished).
Raghavendran, V., Asare, E. & Roy, I. 2020. Bacterial cellulose: Biosynthesis, production, and
applications. Advances in Microbial Physiology 77(11): 89-138.
Rapdu, Y.D., Momdad, D.Q.G., Suhsudwarq,
V., Vijal, Z. & Vidyhu, F. 2006. Production of bacterial cellulose from
fermented soya beans waste. Baghdad Science Journal 192(23): 137-143.
Rasouli, M., Ostavar-Ravari, A. &
Shokri-Afra, H. 2014. Characterization and improvement of phenol-sulfuric acid
microassay for glucose-based glycogen. European Review for Medical and
Pharmacological Sciences 18(4): 2020-2024.
Revin, V., Liyaskina, E., Nazarkina, M.,
Bogatyreva, A. & Shchankin, M. 2018. Cost-effective production of bacterial
cellulose using acidic food industry by-products. Brazilian Journal of
Microbiology 49(Supplement 1): 151-159.
Rodzi, R.M., Nopiah, Z.M., Ezlin, N.
& Basri, A. 2018. Risk management framework towards zero waste strategy for
Malaysia TVET institution. Eurasian Journal of Analytical Chemistry 13(6):
505-511.
San-Valero, P., Abubackar, H.N., Veiga,
M.C. & Kennes, C. 2020. Effect of pH, yeast extract and inorganic carbon on
chain elongation for hexanoic acid production. Bioresource Technology 300:
122659.
Sari, A.M., Budianto, F.A., Nursiwi, A.,
Sanjaya, A.P., Utami, R. & Zaman, M.Z. 2021. Study of Acetobacter
xylinum FNCC 0001 fermentation kinetics using artificial media containing
various carbon and nitrogen concentrations. In IOP Conference Series: Earth
and Environmental Science 828(1): 012004.
Sheltami, R.M., Abdullah, I., Ahmad, I.,
Dufresne, A. & Kargarzadeh, H. 2012. Extraction of cellulose nanocrystals
from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88(2):
772-779.
Son, H.J., Heo, M.S., Kim, Y.G. &
Lee, S.J. 2001. Optimization of fermentation conditions for the production of
bacterial cellulose by a newly isolated Acetobacter sp.A9
in shaking cultures. Biotechnology and Applied Biochemistry 33(1): 1.
Sreeramulu, G., Zhu, Y. & Knol, W.
2000. Kombucha fermentation and its antimicrobial activity. Journal of
Agricultural and Food Chemistry 48(6): 2589-2594.
Subhashree, S.N., Sunoj, S., Xue, J.
& Bora, G.C. 2017. Quantification of browning in apples using colour and
textural features by image analysis. Food Quality and Safety 1(3):
221-226.
Supian, N.N.I., Zakaria, J., Amin,
K.N.M., Mohamad, S. & Mohamad, S.F.S. 2021. Effect of fermentation period
on bacterial cellulose production from oil palm frond (OPF) juice. In IOP
Conference Series: Materials Science and Engineering. IOP Publishing.
1092(1): 012048.
Suwannapinunt, N., Burokorn, J. &
Thaenthanee, S. 2007. Effect of culture conditions on bacterial cellulose (BC)
production from Acetobacter xylinum TISTR976 and physical properties of
BC parchment paper. Journal of Science & Technology 14(4): 357-365.
Swingler, S., Gupta, A., Gibson, H.,
Kowalczuk, M., Heaselgrave, W. & Radecka, I. 2021. Recent advances and
applications of bacterial cellulose in biomedicine. Polymers 13(3): 412.
Torán-Pereg, P., del Noval, B.,
Valenzuela, S., Martinez, J., Prado, D., Perisé, R. & Arboleya, J.C. 2021.
Microbiological and sensory characterization of kombucha SCOBY for culinary
applications. International Journal of Gastronomy and Food Science 23:
100314.
Yodsuwan, N., Owatworakit, A., Ngaokla,
A., Tawichai, N. & Soykeabkaew, N. 2012. Effect of carbon and nitrogen
sources on bacterial cellulose production for bionanocomposite materials. In Conference: The 1st MFUIC. Mae Fah Luang University.
Zhao, H., Li, J. & Zhu, K. 2018.
Bacterial cellulose production from waste products and fermentation conditions
optimization. In IOP Conference Series: Materials Science and Engineering 394(2):
45-47.
*Pengarang surat-menyurat; email:
nurulaqilah@ukm.edu.my
|