Sains Malaysiana 51(5)(2022): 1557-1566
http://doi.org/10.17576/jsm-2022-5105-23
Time-Temperature
Profiles Effect on Thermoluminescence Glow Curve Formation of Germanium Doped
Optical Fibres
(Kesan Profil Suhu Masa pada Pembentukan Lengkung Cahaya Termoluminesen bagi Gentian Optik Berdop Germanium)
MUHAMMAD
SAFWAN AHMAD FADZIL1,*, NORAMALIZA MOHD NOOR2, NIZAM TAMCHEK3 & UNG NGIE MIN4
1Diagnostic
Imaging and Radiotherapy Program, Centre for Diagnostic, Therapeutic and Investigative
Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Department
of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Department
of Physics, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
4Clinical
Oncology Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 5 Julai 2021/Diterima: 7 Oktober 2021
Abstract
The development of optical fibres technology grows in response to seeking a radiation
detector with better thermoluminescence (TL) performance. Concerning the dosimetric characterization study by previous researchers,
this research work has widened the exploration to optimize the time-temperature
profile (TTP) in connection with the glow curve formation of the optical fibres. Two forms of germanium (Ge) doped optical fibres, namely cylindrical optical fibre (CF) and flat optical fibre (FF) were fabricated, and
the TTP were investigated prior to commissioning the optical fibres for fieldwork. CF and FF were irradiated to the dose
of 2 Gy using a 6 MV linear accelerator. Various TTP
profiles, including preheat temperature, preheat time, acquisition temperature
rate, and acquisition time were varied to determine the best thermal profile
for the CF and FF based on the glow curve formations. Out of 4 parameters, an
increase in preheat temperatures ranging from 40 to 120 °C caused a significant
variation in the glow curve formation, thus possibly giving rise to different
TL signals of the optical fibres. The maximum glow peak temperature of CF and FF
was unvarying when different preheat temperatures employed. These findings support the
conceptual idea that manipulating the optical fibres’ readout system can alter the glow curve formation. Thus, an optimized TTP will
provide the correct glow curve configuration for kinetic parameter analysis.
Keywords: Optical fibres;
thermoluminescence glow curve; time-temperature profiles
Abstrak
Pembangunan teknologi gentian optik berkembang sebagai gerak balas dalam
mencari pengesan radiasi dengan prestasi pendar gerlap terma (TL) yang lebih
baik. Merujuk kepada kajian pencirian dosimetrik oleh penyelidik terdahulu,
penyelidikan ini telah memperluaskan penerokaan untuk mengoptimumkan profil
suhu-masa (TTP) yang berkaitan dengan pembentukan lengkung cahaya daripada gentian optik. Dua bentuk germanium
(Ge) dop gentian optik, iaitu gentian optik silinder (CF) dan gentian optik
rata (FF) difabrikasi dan TTP dikaji sebelum gentian optik digunakan untuk
kerja lapangan. CF dan FF disinari dengan dos radiasi 2 Gy menggunakan pemecut linear
bertenaga 6 MV. Pelbagai profil TTP, termasuk suhu pra-pemanasan, tempoh masa
pemanasan, kadar pemerolehan suhu dan masa pemerolehan diubah untuk menentukan
profil terma yang terbaik untuk CF dan FF berdasarkan penghasilan lengkung
berbara. Daripada 4 parameter,
peningkatan suhu pra-pemanasan antara 40 hingga 120 °C menyebabkan variasi yang
ketara dalam pembentukan lengkung berbara, dan ia akan menghasilkan isyarat TL
yang berbeza daripada gentian optik. Suhu maksimum puncak berbara CF dan FF
tidak berubah apabila suhu pra-pemanasan yang berbeza digunakan. Penemuan ini menyokong
idea konseptual bahawa manipulasi terhadap sistem pembacaan gentian optik boleh
mengubah pembentukan lengkung berbara. Oleh itu, TTP yang optimum akan
menyediakan konfigurasi lengkung berbara yang tepat untuk analisa parameter
kinetik.
Kata kunci: Gentian optik; lengkung berbarapendar gerlap terma;
profil suhu-masa
RUJUKAN
Begum, M., Rahman, A.K.M.M., Begum, M., Abdul-Rashid,
H.A., Yusoff, Z. & Bradley, D.A. 2018. Harnessing
the thermoluminescence of Ge-doped silica flat-fibres for medical dosimetry. Sensors and Actuators A: Physical 270: 170-176.
Begum, M., Rahman, A.K.M.M., Abdul-Rashid, H.A., Yusoff, Z., Begum, M., Mat-Sharif, K.A., Amin, Y.M. &
Bradley, D.A. 2015. Thermoluminescence characteristics of Ge-doped optical
fibers with different dimensions for radiation dosimetry. Applied
Radiation and Isotopes 100: 79-83.
Benabdesselam, M., Mady, F., Girard, S., Mebrouk, Y., Duchez, J.B., Gaillardin, M. & Paillet, P.
2013. Performance of Ge-doped optical fiber as a thermoluminescent dosimeter. IEEE Transactions on Nuclear Science 60(6): 4251-4256.
Bradley, D.A., Shafiqah,
A.S., Rozaila, Z.S., Sabtu,
S.N., Sani, S.A., Alanazi, A.H., Jafari, S.M., Mahdiraji, G.A., Adikan, F.M., Maah, M.J. & Nisbet, A.N. 2017. Developments in production of silica-based
thermoluminescence dosimeters. Radiation
Physics and Chemistry 137: 37-44.
Bradley, D.A., Zubair, H.T., Oresegun,
A., Louay, G.T., Abdul-Rashid, H.A., Ung, N.M. & Alzimami, K.S. 2019. Towards the development of doped
silica radioluminescence dosimetry. Radiation Physics and Chemistry 154:
46-52.
Correia, R., James, S., Lee, S.W., Morgan, S.P. & Korposh, S. 2018. Biomedical application of optical fibre sensors. Journal of Optics 20(7): 073003.
Entezam, A., Khandaker, M.U., Amin,
Y.M., Ung, N.M., Maah, J. & Bradley, D.A. 2016.
Thermoluminescence response of Ge-doped SiO2 fibres to electrons, X-and γ-radiation. Radiation Physics and Chemistry 121: 115-121.
Fadzil, M.S.A., Min, U.N., Ariffin,
A., Bradley, D.A. & Noor, N.M. 2019. Evaluation on thermoluminescence
kinetic parameters of Ge-doped cylindrical fibre dosimeter by computerised glow curve deconvolution
technique. In Proceeding of International Symposium on Radiation
Detectors and Their Uses. p. 011036.
Fadzil, M.S.A., Tamchek, N., Ung,
N.M., Ariffin, A., Abdullah, N., Bradley, D.A. &
Noor, N.M. 2018. Assessment of thermoluminescence glow curves and kinetic
parameters of fabricated Ge-doped flat fiber for radiotherapy application. Jurnal Sains Nuklear Malaysia 30(2): 1-14.
Fadzil, M.S.A., Min, U.N., Bradley, D.A. & Noor, N.M.
2017. Different germanium dopant
concentration and the thermoluminescence characteristics of flat Ge-doped
optical fibres. Pertanika Journal of Science and Technology 25(1): 327-336.
Ghomeishi, M., Mahdiraji, G.A., Adikan, F.R.M., Ung, N.M. & Bradley, D.A. 2015.
Sensitive fibre-based thermoluminescence detectors
for high resolution in-vivo dosimetry. Scientific Reports 5: 1-10.
Hassan, M.F.,
Rahman, W.N.W.A., Kadir, A.B.A., Isa, N.M., Tominaga, T., Geso,
M., Akasaka, H., Bradley, D.A. & Noor, N.M. 2018. Ge-doped silica fibre proton beam measurements: Thermoluminescence dose-response and
glow curve characteristics. International Journal of Nanoelectronics and
Materials 11: 209-218.
Horowitz, Y.S.
& Yossian, D. 1995. Computerised glow curve deconvolution: Application to thermoluminescence dosimetry. Radiation Protection Dosimetry 60(1):
1-114.
Lam, S.E.,
Bradley, D.A. & Khandaker, M.U. 2021. Small-field
radiotherapy photon beam output evaluation: Detectors reviewed. Radiation
Physics and Chemistry 178: 108950.
Lam, S.E.,
Bradley, D.A., Mahmud, R., Pawanchek, M., Rashid,
H.A. & Noor, N.M. 2019. Dosimetric characteristics of fabricated Ge-doped silica optical fibre for small-field dosimetry. Results in Physics 12: 816-826.
Lam, S.E., Alawiah, A., Bradley, D.A. & Noor, N.M. 2017. Effects
of time-temperature profiles on glow curves of germanium-doped optical fibre. Radiation Physics and Chemistry 137: 56-61.
Mustafa, S., Saad,
F.F.A., Tamchek, N., Mohamed, F., Bajuri,
F. & Noor, N.M. 2018. Response of fabricated germanium optical fibre subjected to low dose neutron-gamma
irradiation. International Journal
of Nanoelectronics and Materials 11: 253-260.
Noor, N.M., Fadzil, M.S.A., Ung, N.M., Maah,
M.J., Mahdiraji, G.A., Abdul-Rashid, H.A. &
Bradley, D.A. 2016. Radiotherapy dosimetry and the thermoluminescence
characteristics of Ge-doped fibres of differing
germanium dopant concentration and outer diameter. Radiation Physics
and Chemistry 126: 56-61.
O'Keeffe, S., McCarthy, D., Woulfe,
P., Grattan, M.W.D., Hounsell, A.R., Sporea, D.,
Mihai, L., Vata, I., Leen, G. & Lewis, E. 2015. A
review of recent advances in optical fibre sensors
for in vivo dosimetry during radiotherapy. The British Journal of
Radiology 88(1050): 20140702.
Rais, N.N.M., Bradley, D.A., Hashim, A., Isa, N.M., Osman,
N.D., Ismail, I., Hasan, H.A. & Noor, N.M. 2019a. Dosimetric response of fabricated Ge-doped optical fibres in computed
tomography RQT beam quality x-ray beams. Journal of Radiological
Protection 39(3): N8.
Rais, N.N.M., Bradley, D.A., Hashim, A., Osman, N.D. &
Noor, N.M. 2019b. Fabricated germanium-doped fibres for computed tomography dosimetry. Applied Radiation and Isotopes 153:
108810.
Rodrigues, M.L., Kearfott,
K.J., Hsu, S.H., Schlicht, J.E., Parker, L.W. &
Baumgarten, L.R. 2005. The effect of the time-temperature heating profile
design on the precision and accuracy of thermoluminescent (TL) glow curve peak areas for LiF: Mg, Ti. In Proceeding of
the 50th Annual Meeting of the Health Physics Society. 89(1): S8-S8.
Thermo Electron Corporation.
2002. Harshaw Standard TTP Recommendations
- Technical Notice - Publication Number: DOSM-0-N-1202-001. Ohio: Thermo Electron
Corporation.
Yusof, M.F.M.,
Rashid, N.A. & Abdullah, R. 2013. Reproducibility and effect of delayed
readout on LiF:Mg,Ti TLD
treated with different preheat time techniques: A glow curve
study. Jurnal Sains Nuklear Malaysia 25(1): 35-44.
Zakaria, Z., Aziz,
M.A., Ishak, N.H., Suppiah, S., Bradley, D.A. &
Noor, N.M. 2020. Advanced thermoluminescence dosimetric characterization of fabricated Ge-Doped optical fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and Chemistry 166: 108487.
*Pengarang untuk surat-menyurat; email:
safwanfadzil@ukm.edu.my
|