Sains Malaysiana 51(6)(2022):
1725-1732
http://doi.org/10.17576/jsm-2022-5106-10
(+)-Neocadambine A and (-)-Nauclederine Isolated from the Bark of Neolamarckia cadamba (Rubiaceae) as
Natural Advanced Glycation End Products (AGEs) Inhibitors
((+)-Neocadambine A dan (-)-Nauclederine Diasingkan
daripada Kulit Neolamarckia cadamba (Rubiaceae) sebagai Perencat Produk
Akhir Glisasi Lanjutan Semula Jadi (AGEs))
NOOR
AIMI OTHMAN1, SOOK YEE LIEW2,*, PATRICIA BLANCHARD3, SÉVERINE DERBRÉ3, SOON-LIM CHONG1, ABDUL MANAF ALI4 & KHALIJAH AWANG1,5
1Department
of Chemistry, Faculty of Science, Universiti Malaya,
50603 Kuala Lumpur, Federal Territory, Malaysia
2Chemistry Division, Centre for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
3Sonas, EA921, Department of Pharmacy, Faculty of Health
Sciences, University of Angers,
16
Bd Daviers, 49045, Angers cedex 01, France
4Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin,
22200 Besut, Terengganu Darul Iman, Malaysia
5Centre for Natural Products and Drug Discovery (CENAR), Universiti Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
Diserahkan: 29 Mac 2021/Diterima:
25 Oktober 2021
ABSTRACT
The phytochemical study on the dichloromethane extract of Neolamarckia cadamba (Roxb.) Bosser has afforded two
indole alkaloids, (+)-neocadambine A (1) and (-)-nauclederine (2). Their structures were
confirmed by extensive spectroscopic analysis and by comparing with the
reported data. (+)-Neocadambine A (1) and (-)-nauclederine (2) exhibited potent inhibition activity of advanced glycation end products
(AGEs) with IC50 values of 1.2 and 0.95 mM, respectively,
while the latter was almost two times more potent than the standard,
aminoguanidine (1.8 mM). This is the first report on the compounds isolated
from this plant with AGEs inhibition activity. In addition, (-)-nauclederine (2) was isolated for the first time in the
genus of Neolamarckia. Complete 1H-NMR and 13C-NMR of compound 2 were also reported.
Keywords: Advanced glycation end products; indole alkaloid; (-)-nauclederine; (+)-neocadambine A; Neolamarckia cadamba
ABSTRAK
Kajian fitokimia ke atas ekstrak dikloromethana bagi Neolamarckia cadamba (Roxb.) Bosser telah menghasilkan dua alkaloid indola, (+)-neocadambine A (1) dan (-)-nauclederine (2). Strukturnya dikenal pasti melalui pelbagai analisis spektroskopi dan perbandingan dengan data yang telah dilaporkan. (+)-Neocadambine A (1) dan (-)-nauclederine (2) menunjukkan aktiviti perencatan kuat terhadap produk akhir glisasi lanjutan (AGE) dengan nilai IC50 masing-masing 1.2 dan 0.95 mM sementara (-)-nauclederine (2) hampir dua kali ganda lebih kuat daripada piawai, aminoguanidine (1.8 mM). Ini adalah laporan pertama mengenai sebatian yang diasingkan daripada tumbuhan ini dengan aktiviti perencatan terhadap AGE. Selain itu, (-)-nauclederine (2) diasingkan untuk pertama kalinya dalam genus Neolamarckia. 1H-NMR
dan 13C-NMR yang lengkap bagi sebatian 2 juga dilaporkan.
Kata kunci: Alkaloid indola; (-)-nauclederine; (+)-neocadambine A; Neolamarckia cadamba; produk akhir glisasi lanjutan
RUJUKAN
Ahmed, F., Rahman, S.,
Ahmed, N., Hossain, M., Biswas,
A., Sarkar, S., Banna, H.,
Khatun, A., Chowdhury, M.H. & Rahmatullah, R. 2011. Evaluation of Neolamarckia cadamba (Roxb.)
Bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. African Journal of Traditional, Complementary, and Alternative Medicines 8(1): 79-81.
Alam, M.A., Subhan, N., Chowdhury, S.A., Awal, M.A., Mostofa, M., Rashid, M.A.,
Hasan, M.H., Nahar, L. & Satyajit, D.S.
2011. Anthocephalus cadamba (Roxb.) Miq., Rubiaceae, extract shows
hypoglycemic effect and eases oxidative stress in alloxan-induced diabetic rats. Revista Brasileira de Farmacognosia 21(1): 155-164.
Boisard, S.,
Ray, A.M.L., Gatto, J.,
Aumond, M.C., Blanchard, P., Derbré,
S., Flurin, C. & Pascal, R.
2014. Chemical composition, antioxidant and anti-ages activities of a french
poplar type propolis. Journal of
Agricultural and Food Chemistry 62(6): 1344-1351.
Brownlee, M. 2001. Biochemistry and molecular cell
biology of diabetic complications. Nature 414(6865): 813-820.
de Leeuw, K., Kallenberg, C. & Bijl,
M. 2005. Accelerated
atherosclerosis in patients with systemic autoimmune diseases. Annals of the New York Academy of Sciences 1051(1): 362-371.
DeGroot, J. 2004. The AGE of the matrix: Chemistry,
consequence and cure. Current Opinion in
Pharmacology 4(3): 301-305.
Derbré, S.,
Gatto, J., Pelleray, A., Coulon,
L., Séraphin, D. & Richomme, P.
2010. Automating a 96-well microtiter plate assay for identification of AGEs
inhibitors or inducers: Application to the screening of a small natural
compounds library. Analytical and
Bioanalytical Chemistry 398(4): 1747-1758.
Elosta, A., Ghous, T. & Ahmed, N.
2012. Natural products as anti-glycation agents: Possible therapeutic potential
for diabetic complications. Current
Diabetes Reviews 8(2): 92-108.
Grillo, M.A. & Colombatto, S. 2008. Advanced glycation end-products (AGEs):
Involvement in aging and in neurodegenerative diseases. Amino Acids 35(1): 29-36.
Habtemariam, S. 2019. Medicinal Foods as Potential
Therapies for Type-2 Diabetes and Associated Diseases: Chemical and Pharmacological Evidences
for Coffee as a Modulator of Type 2 Diabetes and Metabolic Syndrome. New
York: Academic Press.
Hu, X.J., Di, Y.T., Wang, Y.H., Kong, L.Y.,
Gao, S., Li, C.S.,
Liu, H.Y., He, H.,
Ding, J., Xie, H. & Hao, X. 2009. Carboline alkaloids from
Trigonostemon lii. Planta Medica 75(10):
1157-1161.
Jandeleit-Dahm, K. & Cooper, M.E. 2008. The role of AGEs in cardiovascular disease. Current Pharmaceutical Design 14(10):
979-986.
Kurien, B.T., Hensley, K., Bachmann, M. & Scofield, R.H.
2006. Oxidatively modified autoantigens in autoimmune diseases. Free Radical Biology and Medicine 41(4): 549-556.
Luevano-Contreras, C. & Chapman-Novakofski, K. 2010. Dietary
advanced glycation end products and aging. Nutrients 2(12): 1247-1265.
Martins, D. & Nunez, C.V. 2015. Secondary metabolites from Rubiaceae species. Molecules 20(7): 13422-13495.
McLean, S.,
Dmitrienko, G.I. & Szakolcai, A. 1976. Constituents of Naucleadiderrichii. Part VII.
Synthesis of nauclederine, naucleonine, and naucleonidine; spectroscopic
evidence for the structures of 3α-dihydrocadambine and two other
constituents. Canadian Journal of
Chemistry 54(8): 1262-1277.
Murray, D.G., Szakolcai, A. & McLean, S. 1972. The
constituents of Naucleadiderrichii. Part III. Indole-pyridine alkaloids. Canadian Journal of Chemistry 50(10):
1486-1495.
Pandey, A. & Negi, P.S. 2016. Traditional uses, phytochemistry
and pharmacological properties of Neolamarckia cadamba: A review. Journal of Ethnopharmacology 181(1):
118-135.
Peyroux, J. & Sternberg, M. 2006. Advanced glycation endproducts (AGEs): Pharmacological
inhibition in diabetes. Pathologie-Biologie 54(7): 405-419.
Poulsen, M.W.,
Hedegaard, R.V., Andersen, J.M., Courten,
B.C., Bügel, S., Nielsen, J.,
Skibsted, L.H. & Dragsted, L.O. 2013. Advanced glycation endproducts in food and
their effects on health. Food and
Chemical Toxicology 60: 10-37.
Qureshi, A.K., Mukhtar, M.P., Hirasawa,
Y., Hosoya, T., Nugroho, A.E.,
Morita, H., Shirota, O., Mohamad, K., Hadi, A.H.A.,
Litaudon, M. & Awang, K. 2011. Neolamarckines A and B, new indole alkaloids from Neolamarckia
cadamba. Chemical and Pharmaceutical
Bulletin (Tokyo) 59(2): 291-293.
Reddy, V.P. & Beyaz, A. 2006. Inhibitors of the maillard reaction and age breakers as
therapeutics for multiple diseases. Drug
Discovery Today 11(13-14): 646-654.
Séro, L., Sanguinet, L., Blanchard, P.,
Dang, B.T., Morel, M.,
Richomme, P., Séraphin, D. & Derbré, S.
2013. Tuning a 96-well microtiter plate fluorescence-based assay to identify
AGE inhibitors in crude plant extracts. Molecules
(Basel, Switzerland) 18(11): 14320-14339.
Silva, D.H.S., Castro-Gamboa, L. & Bolzani, V.S. 2010. Plant diversity from Brazilian Cerrado and Atlantic Forest as a
tool for prospecting potential therapeutic drugs. Comprehensive Natural Products II 3(1): 95-133.
Singh, R., Barden, A.,
Mori, T. & Beilin, L. 2001. Advanced glycation end-products: A review. Diabetologia 44(2): 129-146.
Sultana, N., Islam, M.T., Alencar, M.V.O.B.D., Silva, S.W.C., Chowdhury, M.U., Melo-Cavalcante, A.A.C. & Freitas, R.M.D. 2015. Phyto-pharmacological screenings of two
Rubiaceae family plants. African Journal
of Pharmacy and Pharmacology 9(31):
775-782.
Takeuchi, M. & Yamagishi, S. 2008. Possible involvement of advanced glycation
end-products (AGEs) in the pathogenesis of Alzheimer's disease. Current Pharmaceutical Design 14(10):
973-978.
Thorpe, S.R. & Baynes, J.W. 1996. Role of the Maillard reaction in diabetes
mellitus and diseases of aging. Drugs
Aging 9(2): 69-77.
Verma, R.,
Chaudhary, F. & Singh, A. 2018. Neolamarckia cadamba: A comprehensive pharmacological. Global Journal of Pharmacy &
Pharmaceutical Sciences 6(4): 555691.
Vlassara, H. &
Uribarri, J. 2014. Advanced glycation end products
(AGE) and diabetes: Cause, effect, or both? Current
Diabetes Reports 14(1): 453-461.
Wada, R. & Yagihashi, S. 2005. Role of advanced glycation end products and their receptors in
development of diabetic neuropathy. Annals
of the New York Academy of Sciences 1043(1): 598-604.
Wang, B.,
Liu, L., Chen, Y.Y., Li, Q., Li, D., Liu, Y.P. & Luo, X.D. 2015. Monoterpenoid indole alkaloids from
catharanthus roseus cultivated in Yunnan. Natural Product Communications 10(12): 1934578X1501001217.
Wolffenbuttel, B.H., Giordano, D., Founds, H.W. & Bucala, R. 1996. Long-term assessment of glucose
control by haemoglobin-AGE measurement. Lancet 347(9000): 513-515.
Yuan, H.L.,
Zhao, Y.L., Qin, X.J.,
Liu, Y.P., Yu, H.F.,
Zhu, P.F., Jin, Q.,
Yang, X.W. & Luo, X.D. 2020. Anti-inflammatory and analgesic activities of Neolamarckia
cadamba and its bioactive monoterpenoid indole alkaloids. Journal of Ethnopharmacology 260(1):
113103.
*Pengarang untuk surat-menyurat; email: joeyliew5382@um.edu.my
|