Sains Malaysiana 51(6)(2022):
1775-1787
http://doi.org/10.17576/jsm-2022-5106-14
Molecular Interaction Study on
a New Application of Ionic Liquids as Dissolver Toward Carbonate Scale
(Kajian Interaksi Molekul terhadap Aplikasi Baharu
Cecair Ion sebagai Pelarut kepada Skala Kalsium Karbonat)
MUHAMMAD
SUHAIMI MAN1, ALVIN
TEO HUA HUANG1,
SYAMSUL B. ABDULLAH1,*, HANIDA ABDUL AZIZ2, MOHD HASBI AB RAHIM2, SAIFFUL KAMALUDDIN MUZAKIR2 & NORWAHYU JUSOH3
1Faculty
of Chemical & Process Engineering Technology, Universiti Malaysia Pahang,
26300 Gambang, Pahang Darul Makmur, Malaysia
2Faculty
of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300
Gambang, Pahang Darul Makmur, Malaysia
3CO2 Research Centre (CO2, RES), R&D Building, Universiti Teknologi
PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
Diserahkan: 21 Julai 2021/Diterima:
1 November 2021
Abstract
Latest
advances of ionic liquids (ILs) have allowed to a new
application on the dissolution of calcium carbonate (CaCO3) scales where the CaCO3 scale deposition have seriously severe threat in the petroleum field. In this study, the molecular interaction between CaCO3 and ILs
n-pyridinium
chloride [NPy][Cl] was studied
experimentally in order to get a better understanding during the dissolution of
scale. NMR
and FTIR spectroscopy was used to study the molecular interaction between CaCO3 and [NPy][Cl] solution during the
dissolution process. To
further evaluate the result, the simulation study using Gaussian
software was utilized to predict in detail the molecular interaction between [Npy][Cl] and CaCO3. The finding from this
study showed that the metal complex was formed via ligand after dissolution
scale process. Based on the findings, it can
be clinched that [Npy][Cl] has potential to be used as a
scale dissolver in the oilfield, especially in dissolving calcium carbonate
scales.
Keywords: Calcium carbonate;
dissolution; ionic liquids; molecular interaction
Abstrak
Kemajuan terkini cecair ion (ILs) telah membolehkan
aplikasi baharu terhadap pembubaran mendakan pelarutan kalsium karbonat (CaCO3)
dengan mendakan pemendapan CaCO3 memberi ancaman yang buruk dalam
bidang petroleum. Dalam kajian ini, interaksi molekul antara CaCO3 dan ILs n-piridinium klorida [NPy][Cl] telah dikaji untuk mendapatkan pemahaman
yang lebih menyeluruh semasa pembubaran mendakan. Spektroskopi NMR dan FTIR
digunakan untuk mengkaji interaksi molekul antara larutan CaCO3 dan
[NPy][Cl] semasa proses pembubaran. Untuk penilaian selanjutnya, kajian
simulasi menggunakan perisian Gaussian telah digunakan untuk meramal secara
terperinci interaksi molekul antara [Npy][Cl] dan CaCO3. Hasil
daripada kajian ini menunjukkan bahawa kompleks logam terbentuk melalui ligan
selepas proses mendakan pelarutan. Berdasarkan hasil kajian, dapat dipastikan
bahawa [Npy][Cl] berpotensi untuk digunakan sebagai pelarut mendakan dalam medan
minyak, terutamanya dalam melarutkan mendakan CaCO3.
Kata kunci: Cecair ion; interaksi molekul; kalsium
karbonat; pembubaran
RUJUKAN
Ammawath, W., Man, Y.B.C., Baharin, B.S. & Rahman, R.B.A. 2004. A new method for
determination of tert-butylhydroquinone
(TBHQ) in RBD palm olein with FTIR spectroscopy. Journal
of Food Lipids 11(4): 266-277.
Becke, A.D. 1993. Density functional thermochemistry
III. The
role of exact exchange. Journal of Chemical
Physics 98: 5648.
Fischer, S.A., Crotty, A.M., Kilina, S.V., Ivanov, S.A. & Tretiak, S. 2012. Passivating ligand and
solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale 4(3): 904-914.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. & Fox, D.J. 2010. Gaussian 16 Rev B.01 Release Notes. Gaussian 09. Wallingford, CT: Gaussian Inc.
Garba, M.D. & Sulaiman, M.S. 2014. Oilfield scales
treatment and managerial measures in the fight for sustainable production. Petroleum
Technology Development Journal 2: 19-37.
Grabda, M., Panigrahi, M., Oleszek, S., Kozak, D., Eckert, F., Shibata, E. & Nakamura, T. 2014. COSMO-RS Screening for
efficient ionic liquid extraction solvents for NdCl3 and DyCl3. Fluid
Phase Equilibria 383: 134-143.
Han, J., Dai, C., Yu, G. & Lei, Z. 2018. Parameterization of
COSMO-RS
model for ionic liquids. Green Energy &
Environment 3(3): 247-265.
Hay, P.J. & Wadt, W.R. 1985. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics 82(1): 270-283.
Kaur, P. & Prakash, G. 2016. Molecular interactions
in 2-Isopropoxy
ethanol + alcohols: A thermo-physical and
spectroscopic approach. Journal of Molecular Liquids 218(C): 246-254.
Khan, I., Taha, M., Pinho, S.P. & Coutinho, J.A.P. 2016a. Interactions of
pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: Measurements and COSMO-RS modelling. Fluid
Phase Equilibria 414: 93-100.
Khan, M.S., Liew, C.S., Kurnia, K.A., Cornelius, B. & Lal, B. 2016b. Application of COSMO-RS in investigating
ionic liquid as thermodynamic hydrate inhibitor for methane hydrate. Procedia
Engineering 148: 862-869.
Kohno, Y. & Ohno, H. 2012. Temperature-responsive ionic liquid/water interfaces: Relation between
hydrophilicity of ions and dynamic phase change. Physical
Chemistry Chemical Physics 14(15): 5063-5070.
Kumar, S., Naiya, T.K. & Kumar, T. 2018. Developments in oilfield
scale handling towards green technology: A review. Journal
of Petroleum Science Engineering 169: 428-444.
Lee, C., Yang, W. & Parr, R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a
functional of the electron density. Physical Review B 37(2): 785.
Li, L.,
Nasr-El-Din, H.A., Chang, F.F. & Lindvig, T. 2008. Reaction of simple
organic acids and chelating agents with calcite. In International Petroleum Technology Conference. IPTC. pp. 1-15.
Maginn, E.J. 2009. Molecular simulation of
ionic liquids: Current
status and future opportunities. Journal
of Physics: Condensed Matter 21(37): 373101.
Majstorović,
D.M., Živković, E.M., Mitrović, A.D., Munćan, J.S. &
Kijevčanin, M.L. 2016. Volumetric
and viscometric study with FT-IR
analysis of binary systems with diethyl succinate and alcohols. Journal
of Chemical Thermodynamics 101: 323-336.
Moghadasi, J., Jamialahmadi, M., Müller-Steinhagen, H. & Sharif, A. 2003. Scale formation in oil
reservoir and production equipment during water injection (kinetics of CaSO4 and
CaCO3 crystal growth and effect on formation damage). In SPE
European Formation Damage Conference. SPE International. pp. 1-12.
Muzakir, S.K., Alias, N., Yusoff, M.M. & Jose, R. 2013. On the missing
links in quantum dot solar cells: A DFT study on fluorophore oxidation and
reduction processes in sensitized solar cells. Physical
Chemistry Chemical Physics 15(38): 16275-16285.
Qiao, Y., Ma, W., Theyssen, N., Chen, C. & Hou, Z. 2017. Temperature-responsive ionic liquids: Fundamental behaviors
and catalytic applications. Chemical Reviews 117(10): 6881-6928.
Rahul, D., Sankar, M.G., Chand, G.P. & Ramachandran, D. 2015. Studies of physical
properties on molecular interactions in binary liquid mixtures of 3-chloroaniline with
isomeric butanols at different temperatures. Journal
of Molecular Liquids 211: 386-394.
Ramones, M., Rachid, R., Flor, D., Gutierrez, L. & Milne, A. 2015. Removal of organic and
inorganic scale from electric submersible pumps. In SPE
Artificial Lift Conference - Latin,
America and Caribbean. SPE International. pp. 27-28.
Refaei, M.I.
& Al-Kandari, A.K. 2009. Oil
fields scale deposition prediction methodology. In Kuwait
International Petroleum Conference and Exhibition. SPE
International. pp. 1-22.
Silverstein,
R.M., Webster, F.X. & Kiemle, D.J. 2006. Spectrometric
Identification of Organic Compounds. 7th ed. New York: John Wiley & Sons,
Inc.
Tomé, L.I.N., Jorge, M., Gomes, R.B. & Coutinho, J.A.P. 2012. Molecular dynamics
simulation studies of the interactions between ionic liquids and amino acids in
aqueous solution. Journal of Physical
Chemistry B 116(6): 1831-1842.
Zhao, Y., Wang, H., Pei, Y.,
Liu, Z. & Wang, J. 2016. Understanding
the mechanism of LCST phase separation of mixed ionic liquids in water by MD
simulations. Physical Chemistry Chemical
Physics 18(33): 23238-23245.
*Pengarang untuk
surat-menyurat; email: syamsul@ump.edu.my
|