Sains Malaysiana 51(6)(2022): 1933-1944

http://doi.org/10.17576/jsm-2022-5106-28

 

Statistical Optimization of Zinc Oxide Nanorod Synthesis for Photocatalytic Degradation of Methylene Blue

(Pengoptimuman Statistik Sintesis Nanorod Zink Oksida untuk Degradasi Fotopemangkinan Metilena Biru)

 

AINI AYUNNI MOHD RAUB, JUMRIL YUNAS*, MOHD AMBRI MOHAMED, JAMAL KAZMI, JAENUDIN RIDWAN & AZRUL AZLAN HAMZAH

 

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 28 Februari 2022/Diterima: 12 Mei 2022

 

Abstract

In this work, synthesis process parameters of Zinc Oxide nanorods (ZnO NRs) photocatalyst is optimized using Taguchi Method to obtain the highest degradation rate of Methylene Blue dye, MB. The Taguchi L27 (38) orthogonal array technique was used to determine the optimum conditions for the synthesis of the nanostructured photocatalyst. Eight important synthesis process parameters were chosen in the analysis while the effects of the parameters were studied using signal-to-noise (S/N) ratio analysis using minitab-16. The ZnO NRs photocatalyst was synthesized via solution process route based on the parameters obtained from the layout of the orthogonal arrays. The optimized synthesized nanorods was then characterized using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), photoluminescence (PL), ultraviolet-visible near-infrared (UV-VIS-NIR), and Raman spectroscopies while the photodegradation of MB was determined by UV-VIS spectrum analysis under ultraviolet light irradiation. The results show that ZnO NRs with hexagonal wurtzite structure and bandgap energy of 3.25 eV have been obtained. The Taguchi analysis based on simulated experimental runs predicted the highest MB degradation percentage of 17.12% that can be achieved under optimum process conditions. Meanwhile, experimental photocatalytic degradation of MB using ZnO NRs synthesized under the same optimum condition achieved a degradation percentage of 17.27%, which deviates only 0.88% from the predicted value. This analysis could give an approach to optimize the synthesis process to ensure the good performance of nano-photocatalyst for the photodegradation of organic contaminations in industrial wastewater in a short time and cost-effective process.

 

Keywords: Hydrothermal; MB degradation; synthesis optimization; Taguchi; ZnO NRs photocatalyst

 

Abstrak

Dalam kertas ini, parameter proses sintesis bagi fotomangkin nanorod Zink Oksida (ZnO NRs) dioptimumkan menggunakan Kaedah Taguchi untuk mendapatkan kadar degradasi tertinggi untuk pewarna metilena biru, MB. Teknik tatasusunan ortogon Taguchi L27 (38) digunakan untuk menentukan keadaan optimum untuk sintesis fotomangkin berstruktur nano. Lapan parameter proses sintesis penting telah dipilih dalam analisis manakala kesan parameter dikaji menggunakan analisis nisbah isyarat-ke-bunyi (S/N) menggunakan minitab-16. Fotomangkin ZnO NRs telah disintesis melalui laluan proses penyelesaian berdasarkan parameter yang diperoleh daripada susun atur tatasusunan ortogon. Mikroskop elektron pengimbasan pelepasan medan (FESEM), pembelauan sinar-X (XRD), fotoluminesen (PL), inframerah-dekat sinar boleh nampak ultralembayung (UV-VIS-NIR) dan spektroskopi Raman manakala fotodegradasi MB ditentukan oleh analisis spektrum UV-VIS di bawah penyinaran cahaya ultralembayung. Keputusan menunjukkan bahawa ZnO NRs dengan struktur wurtzite heksagon dan tenaga celah jalur sebanyak 3.25 eV telah diperoleh. Analisis Taguchi berdasarkan larian uji kaji simulasi meramalkan peratusan degradasi MB tertinggi sebanyak 17.12% boleh dicapai di bawah keadaan proses optimum. Sementara itu, degradasi fotokatalitik uji kaji MB menggunakan ZnO NRs yang disintesis di bawah keadaan optimum yang sama mencapai peratusan degradasi sebanyak 17.27%, yang menyimpang hanya 0.88% daripada nilai yang diramalkan. Analisis ini boleh memberi pendekatan dalam mengoptimumkan proses sintesis untuk memastikan prestasi nano-fotomangkin yang baik untuk fotodegradasi pencemaran organik dalam air sisa industri dalam masa yang singkat dan kos efektif.

 

Kata kunci: Degradasi MB; fotomangkin ZnO NRs; hidroterma; pengoptimuman sintesis; Taguchi

 

RUJUKAN

Aini Ayunni Mohd Raub, Jumril Yunas, Mohd Ambri Mohamed, Jamal Kazmi & Jaenudin Ridwan. 2021. Structural and optical properties investigation of graphene oxide coated ZnO nanorods for enhanced photocatalytic effect. Proceedings of the 13th 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM).

Al-Kdasi, A., Idris, A., Saed, K. & Guan, C.T. 2004. Treatment of textile wastewater by advanced oxidation processes - A review. Global Nest: Int. J. 6: 222-230.

Azzouz, I., Ghozlane Habba, Y., Capochichi-Gnambodoe, M., Marty, F., Vial, J., Leprince-Wang, Y. & Bourouina, T. 2018. Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds. Microsystems & Nanoengineering 4: 17093. https://doi.org/10.1038/micronano.2017.93.

Chung, K-T., Stevens Jr., S.E. & Cerniglia, C.E. 1992. The Reduction of azo dyes by the intestinal microflora. Critical Reviews in Microbiology 18(3): 175-190. https://doi.org/10.3109/10408419209114557.

Devadi, M.A.H., Krishna, M., Narasimha Murthy, H.N. & Sathyanarayana, B.S. 2014. Statistical optimization for photocatalytic degradation of methylene blue by Ag-TiO2 nanoparticles. Procedia Materials Science 5: 612-621. https://doi.org/https://doi.org/10.1016/j.mspro.2014.07.307.

Elliott, A., Hanby, W. & Malcolm, B. 2002. The near infra-red absorption spectra of natural and synthetic fibres. British Journal of Applied Physics 5: 377. https://doi.org/10.1088/0508-3443/5/11/301.

Foo, K.L., Uda Hashim, Kashif Muhammad & Voon, C.H. 2014. Sol-gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Research Letters 9(1): 429. https://doi.org/10.1186/1556-276X-9-429.

Garcia, S.P. & Semancik, S. 2007. Controlling the morphology of zinc oxide nanorods crystallized from aqueous solutions:  The effect of crystal growth modifiers on aspect ratio. Chemistry of Materials 19(16): 4016-4022. https://doi.org/10.1021/cm061977r. https://doi.org/10.1021/cm061977r.

Jankovic, A., Chaudhary, G. & Goia, F. 2021. Designing the design of experiments (DOE) - An investigation on the influence of different factorial designs on the characterization of complex systems. Energy and Buildings 250: 111298. https://doi.org/10.1016/j.enbuild.2021.111298.

Kareem, M. 2020. Effect of annealing temperature on structural, morphological and optical properties of ZnO nanorod thin films prepared by hydrothermal method. Journal of Ovonic Research 16: 53-61.

Kazmi Jamal, Poh Choon Ooi, Boon Tong Goh, Min Kai Lee, M.F. Mohd Razip Wee, Siti Shafura A Karim, Syed Raza Ali Raza & Mohd Ambri Mohamed. 2020. Bi-doping improves the magnetic properties of zinc oxide nanowires. RSC Advances 10(39): 23297-23311. https://doi.org/10.1039/d0ra03816d.

Kazmi Jamal, Poh Choon Ooi, Syed Raza Ali Raza, Boon Tong Goh, Siti Shafura A. Karim, Mohd Hazrie Samat, Min Kai Lee, M.F. Mohd. Razip Wee, Mohamad Fariz Mohamad Taib & Mohd Ambri Mohamed. 2021. Appealing stable room-temperature ferromagnetism by well-aligned 1D Co-doped zinc oxide nanowires. Journal of Alloys and Compounds 872: 159741. https://doi.org/10.1016/j.jallcom.2021.159741.

Kestioğlu, K., Yonar, T. & Azbar, N. 2005. Feasibility of physico-chemical treatment and Advanced Oxidation Processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochemistry 40(7): 2409-2416. https://doi.org/https://doi.org/10.1016/j.procbio.2004.09.015.

Kim, Y-J., Lee, J-H. & Yi, G-C. 2009. Vertically aligned ZnO nanostructures grown on graphene layers. Applied Physics Letters 95(21): 213101. https://doi.org/10.1063/1.3266836.

Mangiafico, S.S. 2018. The problem with p-values: Are results from statistical tests meaningful? 2018 Proceedings 3rd Annual Extension Program Updates at the Agricultural Agents’ Association of New Jersey, Inc. Annual Meeting. p. 10.

Mohd Fudzi, L., Zainal, Z., Lim, H.N., Chang, S.K., Holi, A.M. & Sarif Mohd Ali, M. 2018. Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials (Basel) 11(5): 704. https://doi.org/10.3390/ma11050704.

Mohd Raub, Aini Ayuni, Jumril Yunas, Mohd Ambri Mohamed, Badariah Bais, Azrul Azlan Hamzah, Jaenudin Ridwan, Jamal Kazmi & Muhamad Azuddin Hassan. 2022. Synthesis and characterization of ZnO NRs with spray coated GO for enhanced photocatalytic activity. Ceramics International 48(13): 18238-18245. https://doi.org/10.1016/j.ceramint.2022.03.082.

Nagaraju, G., Shivaraju, G.C., Banuprakash, G. & Rangappa, D. 2017. Photocatalytic activity of ZnO nanoparticles: Synthesis via solution combustion method. Materials Today: Proceedings 4(11): 11700-11705. https://doi.org/10.1016/j.matpr.2017.09.085.

Ong, C.B., Ng, L.Y. & Abdul Wahab Mohammad. 2018. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 81: 536-551. https://doi.org/10.1016/j.rser.2017.08.020.

Pouretedal, H.R., Fallahgar, M., Pourhasan, F.S. & Mohammad Nasiri. 2017. Taguchi optimization of photodegradation of yellow water of trinitrotoluene production catalyzed by nanoparticles TiO2/N under visible light. Iranian Journal of Catalysis 7(4): 317-326.

Qiu, R., Zhang, D., Mo, Y., Song, L., Brewer, E., Huang, X. & Xiong, Y. 2008. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. Journal of Hazardous Materials 156(1): 80-85. https://doi.org/https://doi.org/10.1016/j.jhazmat.2007.11.114.

Rehman, Z.U., Heo, S.N., Cho, H.J. & Koo, B.H. 2016. Vertically aligned ZnO nanorods: Effect of synthesis parameters. J. Nanosci. Nanotechnol. 16(6): 6555-6559. https://doi.org/10.1166/jnn.2016.12136.

Seyed Mojib Zahraee, Milad Hatami, Noordin Mohd Yusof, Jafri Mohd Rohani & Farhad Ziaei. 2013. Combined use of design of experiment and computer simulation for resources level determination in concrete pouring process. Jurnal Teknologi 64(1): 43-49.

Shamsikasmaei, A., Sohrabi, M., Dehaghi, S. & Ghasemi, H. 2013. Using the Taguchi optimization method for the photodegradation of a Di-Azo dye by UV/Nd-TiO2 and a fixed bed system. Fresenius Environmental Bulletin 22: 3287-3292.

Solis-Pomar, F., Jaramillo, A., Lopez-Villareal, J., Medina, C., Rojas, D., Mera, A.C., Meléndrez, M.F. & Pérez-Tijerina, E. 2016. Rapid synthesis and photocatalytic activity of ZnO nanowires obtained through microwave-assisted thermal decomposition. Ceramics International 42(16): 18045-18052. https://doi.org/10.1016/j.ceramint.2016.08.084.

Sun, L., Zhao, D., Song, Z., Shan, C., Zhang, Z., Li, B. & Shen, D. 2011. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. Journal of Colloid and Interface Science 363(1): 175-181. https://doi.org/https://doi.org/10.1016/j.jcis.2011.07.005.

Taguchi, G., Konishi, S. & Wu, Y. 1987. Taguchi Methods: Orthogonal Arrays and Linear Graphs. Tools for Quality Engineering. Dearborn, Michigan: American Supplier Institute.

Tufekci, N., Sivri, N. & Toroz, I. 2007. Pollutants of textile industry wastewater and assessment of its discharge limits by water quality standards. Turkish Journal of Fisheries and Aquatic Sciences 7: 97-103.

Xia, K. 2018. Simulation of a photocatalytic microreactor with COMSOL multiphysics. Mechanical Engineering, University of California Riverside. Msc. Thesis (Unpublished).

Xu, L., Hong, M., Wang, Y., Li, M., Li, H., Nair, M.P.N. & Li, C-Z. 2016. Tunable synthesis solid or hollow Au–Ag nanostructure, assembled with GO and comparative study of their catalytic properties. Science Bulletin 61(19): 1525-1535. https://doi.org/https://doi.org/10.1007/s11434-016-1165-0.

Zhang, H., Feng, J. & Zhang, M. 2007. Preparation of ZnO nanorods through wet chemical method. Materials Letters 61: 5202-5205. https://doi.org/10.1016/j.matlet.2007.04.030.

 

*Pengarang untuk surat-menyurat email: jumrilyunas@ukm.edu.my

     

   

sebelumnya