Sains Malaysiana 51(7)(2022): 1957-1968

http://doi.org/10.17576/jsm-2022-5107-01

 

Elucidating Hepatic Lipidosis in Stray Cats through Serum Biochemistry, Liver Histopathology and Liver RNA Expression of PPAR-δ and PPAR-γ

(Pengesanan Lipodesis Hepar pada Kucing Liar melalui Serum Biokimia, Histopatologi Hati dan Ekspresi RNA Hati PPAR- δ dan PPAR- γ)

 

F. SALLEH1, Y.M. GOH1, S.F. LAU2, P.A.M.A. RANI2, 7, R. RADZI2, M. MAZLAN3, A.R., ALASHRAF2, 8, 9, S.H. GOH2, 6, S.A. RAHMAN3, 6, T.B.M. MOHIDIN4, M.N. AKMAL1, A.N. ILIAS1 & M. AJAT1, 5,*

 

1Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

3Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

4Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia

5Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 6Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, 16100 Kota Bharu, Kelantan Darul Naim, Malaysia

7Jade Hills Veterinary Hospital, Jade Hills, 43000 Kajang, Selangor Darul Ehsan, Malaysia

8Beaty Water Research Centre, Queen’s University, Kingston, Ontario, Canada

9School of Environmental Studies & Department of Chemistry, Queen’s University, Kingston, Ontario, Canada

Dataran Jade, 28, Jln Dataran Jls, 43000 K Dataran Jade, 28, Jln Dataran Jade 2,

Diserahkan: 10 Oktober 2021/Diterima: 2 Januari 2022

 

ABSTRACT

Early detection of feline hepatic lipidosis (FHL) with appropriate treatment can increase prognosis significantly. This study looks into the serum biochemistry and lipid composition of serum and liver samples in a group of stray cats (N=18) collected from pounds in Klang Valley, Malaysia. Alanine aminotransferase (ALT) in blood serum was used to detect for liver damage possibly due to FHL, confirmed through light microscopy, serum biochemistry (triglyceride, cholesterol, creatinine, and urea), liver triglyceride and cholesterol concentrations, and liver RNA expression of lipid droplet regulators peroxisome proliferator-activated receptors (PPARs). Differing severity of FHL in samples were divided and grouped using an adapted scoring method observing fatty change of liver (FCL) with trends between FCL groups investigated. Elevated serum ALT reflective of increasing FCL severity was observed with elevated concentrations of liver TAG and cholesterol levels. Serum TAG and cholesterol decreased with heightened FCL pointing to fatty acid oxidation and lipid restoration in the liver, supported by PPAR-γ expression which also propose macrophage activation for liver recovery alongside PPAR-δ for lipogenesis and inflammatory reactions. Elevated serum creatinine and urea levels with increasing FCL severity propose overall intact hepatic function in the stray cat samples.

 

Keywords: Felis catus; hepatic lipidosis; PPAR-δ; PPAR-γ; serum biochemistry

 

Abstrak

Pengesanan awal lipidosis hepatik felin (LHF) berserta rawatan bersesuaian dapat meningkatkan prognosis dengan ketara. Kajian ini meneliti serum biokimia dan komposisi serum lipid dan sampel hati sekumpulan kucing liar (N=18) yang telah dikumpul daripada pusat lindungan kucing terbiar di sekitar Lembah Klang, Malaysia. Alanina aminotransferase (ALT) di dalam serum darah digunakan bagi mengesan kerosakan hati yang mungkin disebabkan LHF, disahkan melalui mikroskopi cahaya, serum biokimia (trigliserida, kolesterol, kreatinina dan urea), kandungan trigliserida (TG) dan kolestrol hati serta pengekspresan asid ribonukleik hati daripada pengatur titik lipid reseptor-reseptor diaktifkan-pengproliferat peroksisom (RDPP) proliferator peroksisom -diaktifkan reseptor (PPARs). Keparahan yang berbeza antara sampel LHF dibahagi dan dikelompok menggunakan sebuah kaedah penilaian yang telah digubah untuk memerhati perubahan lemak hati (PLH), seterusnya mengkaji trend PLH antara kelompok. Kenaikan serum ALT seiring dengan keparahan PLH telah diperhati berserta kenaikan kandungan TG dan kolesterol hati. Penurunan serum TG dan kolesterol seiring dengan keparahan PLH menunjukkan berlakunya pengoksidaan asid lemak dan pemulihan lipid di dalam hati, ini telah disokong oleh pengekspresan RDPP-γ yang juga mencadangkan pengaktifan makrofaj bagi memulihkan hati di samping RDPP-δ untuk lipogenesis dan reaksi-reaksi radang. Kenaikan kreatinina dan serum urea seiring dengan keparahan PLH mencadangkan kebolehan fungsi hepatik pada kucing-kucing terbiar yang dikaji.

 

Kata kunci: Felis catus; lipodesis hepar; PPAR-δ; PPAR-γ; serum biokimia

 

RUJUKAN

Armstrong, P.J. & Blanchard, G. 2009. Hepatic lipidosis in cats. Veterinary Clinics of North America: Small Animal Practice 39(3): 599-616.

Barmore, W., Azad, F. & Stone, W.L. 2020. Physiology, urea cycle. In StatPearls. Treasure Island, Florida: StatPearls Publishing.

Baum, N., Dichoso, C.C. & Carlton, C.E. 1975. Blood urea nitrogen and serum creatinine: Physiology and interpretations. Urology 5(5): 583-588.

Bligh, E.G. & Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8): 911-917.

Boag, F., Weerakoon, J., Ginsburg, J., Havard, C.W. & Dandona, P. 1985. Diminished creatinine clearance in anorexia nervosa: Reversal with weight gain. Journal of Clinical Pathology 38(11): 60-63.

Cárdenas, A. & Ginès, P. 2009. A patient with cirrhosis and increasing creatinine level: What is it and what to do? Clinical Gastroenterology and Hepatology 7(12): 1287-1291.

Center, S.A. 2007. Interpretation of liver enzymes. Veterinary Clinics of North America: Small Animal Practice 37(2): 297-333.

Center, S.A., Crawford, M.A., Guida, L., Erb, H.N. & King, J. 1993a. A retrospective study of 77 cats with severe hepatic lipidosis: 1975-1990. Journal of Veterinary Internal Medicine 7(6): 349-359.

Cullen, J.M., van den Ingh, T.S.G.A.M., Van Winkle, T., Charles, J.A. & Desmet, V.J. 2006. Morphological classification of parenchymal disorders of the canine and feline liver: 1. Normal histology, reversible hepatocytic injury and hepatic amyloidosis. In WSAVA Standards for Clinical and Histological Diagnosis of Canine and Feline Liver Diseases, edited by Rothuizen, J. Amsterdam: Elsevier. pp. 77-83.

de la Rosa Rodriguez, M.A. & Kersten, S. 2017. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1862(10): 1212-1220.

Delanaye, P., Cavalier, E. & Pottel, H. 2017. Serum creatinine: Not so simple! Nephron 136: 302-308.

Dor, C., Adamany, J.L., Kisielewicz, C., de Brot, S., Erles, K. & Dhumeaux, M.P. 2018. Acquired urea cycle amino acid deficiency and hyperammonaemic encephalopathy in a cat with inflammatory bowel disease and chronic kidney disease. Journal of Feline Medicine and Surgery Open Reports 4(2): 2055116918786750.

El-Gayar, S., Thüring-Nahler, H., Pfeilschifter, J., Röllinghoff, M. & Bogdan, C. 2003. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. The Journal of Immunology 171(9): 4561-4568.

Farese, R.V. & Walther, T.C. 2016. Lipid droplets go nuclear. Journal of Cell Biology 212(1): 7-8.

Glavind, E., Aagaard, N.K., Grønbæk, H., Møller, H.J., Orntoft, N.W., Vilstrup, H. & Thomsen, K.L. 2016. Alcoholic hepatitis markedly decreases the capacity for urea synthesis. PLoS ONE 11(7): e0158388.

Hall, J.A., Barstad, L.A. & Connor, W.E. 1997. Lipid composition of hepatic and adipose tissues from normal cats and from cats with idiopathic hepatic lipidosis. Journal of Veterinary Internal Medicine 11(4): 238-242.

Higgins, C. 2016. Urea and the Clinical Value of Measuring Blood Urea Concentration. https://acutecaretesting.org/en/articles/urea-and-the-clinical-value-of-measuring-blood-urea-concentration

Hinz, B., Phan, S.H., Thannickal, V.J., Galli, A., Bochaton-Piallat, M.L. & Gabbiani, G. 2007. The myofibroblast: One function, multiple origins. American Journal of Pathology 170(6): 1807-1816.

Kalaitzakis, E., Roubies, N., Panousis, N., Pourliotis, K., Kaldrymidou, E. & Karatzias, H. 2007. Clinicopathologic evaluation of hepatic lipidosis in periparturient dairy cattle. Journal of Veterinary Internal Medicine 21(4): 835-845.

Kang, K., Reilly, S.M., Karabacak, V., Gangl, M.R., Hatano, B. & Lee, C. 2009. Adipocyte-dreved Th2 cytokines and myeloid PPAR delta. Cell Metabolism 7(6): 485-495.

Kiapidou, S., Liava, C., Kalogirou, M., Akriviadis, E. & Sinakos, E. 2020. Chronic kidney disease in patients with non-alcoholic fatty liver disease: What the hepatologist should know? Annals of Hepatology 19(2): 134-144.

Krishna, M. 2013. Role of special stains in diagnostic liver pathology. Clinical Liver Disease 2(S1): S8-S10.

Kuzi, S., Segev, G., Kedar, S., Yas, E. & Aroch, I. 2017. Prognostic markers in feline hepatic lipidosis: A retrospective study of 71 cats. Veterinary Record 181(19): 512-512.

Lawler, D.F., Chase, K., Teckenbrock, R. & Lark, K.G. 2006. Heritable components of feline hematology, clinical chemistry, and acid-base profiles. Journal of Heredity 97(6): 549-554.

Ley, K. 2017. M1 means kill; M2 means heal. The Journal of Immunology 199(7): 2191-2193.

Liss, K.H.H. & Finck, B.N. 2017. Biochimie PPARs and nonalcoholic fatty liver disease. Biochimie 136: 65-74.

Liu, J., Han, L., Zhu, L. & Yu, Y. 2016. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids in Health and Disease 15(1): 1-9.

Mezey, E. 1982. Liver disease and protein needs. Annual Review of Nutrition 2(1): 21-50.

Minamoto, T., Walzem, R.L., Hamilton, A.J., Hill, S.L., Payne, H.R., Lidbury, J.A., Suchodolski, J.S. & Steiner, J.M. 2018. Altered lipoprotein profiles in cats with hepatic lipidosis. Journal of Feline Medicine and Surgery 21(4): 363-372.

Musso, G., Gambino, R., Tabibian, J.H., Ekstedt, M., Kechagias, S., Hamaguchi, M., Hultcrantz, R., Hagström, H., Yoon, S.K., Charatcharoenwitthaya, P. & George, J. 2014. Association of non-alcoholic fatty liver disease with chronic kidney disease: A systematic review and meta-analysis. PLoS Medicine 11(7): e1001680.

Nakamura, M.T., Yudell, B.E. & Loor, J.J. 2014. Regulation of energy metabolism by long-chain fatty acids. Progress in Lipid Research 53(1): 124-144.

Orecchioni, M., Ghosheh, Y., Pramod, A.B. & Ley, K. 2019. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Frontiers in Immunology 10: 1084.

Ostermann, M., Kashani, K. & Forni, L.G. 2016. The two sides of creatinine: Both as bad as each other? Journal of Thoracic Disease 8(7): E628-E630.

Perrone, R.D., Madias, N.E. & Levey, A.S. 1992. Serum creatinine as an index of renal function: New insights into old concepts. Clinical Chemistry 38(10): 1933-1953.

Porta, C., Riboldi, E., Ippolito, A. & Sica, A. 2015. Molecular and epigenetic basis of macrophage polarized activation. Seminars in Immunology 27(4): 237-248.

Shangraw, R.E. & Jahoor, F. 1999. Effect of liver disease and transplantation on urea synthesis in humans: Relationship to acid-base status. American Journal of Physiology-Gastrointestinal and Liver Physiology 276(5): G1145-G1152.

Slack, A., Yeoman, A. & Wendon, J. 2010. Renal dysfunction in chronic liver disease. Critical Care 14(2): 214.

Softic, S., Cohen, D.E. & Kahn, C.R. 2016. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Digestive and Liver Disease 61(5): 1282-1293.

Takabatake, T., Ohta, H., Ishida, Y., Hara, H. & Ushiogi, Y. 1989. Low serum creatinine levels in severe hepatic disease. Archives of Internal Medicine 149(6): 1313-1315.

Tan, N.S., Vázquez-Carrera, M., Montagner, A., Sng, M.K., Guillou, H. & Wahli, W. 2016. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Progress in Lipid Research 64: 98-122.

Thongprayoon, C., Cheungpasitporn, W. & Kashani, K. 2016. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. Journal of Thoracic Disease 8(5): E305-E311.

Valtolina, C. & Favier, R.P. 2017. Feline hepatic lipidosis. Veterinary Clinics of North America - Small Animal Practice 47(3): 683-702.

Verbrugghe, A. & Bakovic, M. 2013. Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis. Nutrients 5(7): 2811-2835.

Washabau, R.J. & Day, M.J. 2013. Canine and Feline Gastroenterology. Amsterdam: Elsevier. pp. 1-1017.

Yerian, L. 2011. Histopathological evaluation of fatty and alcoholic liver diseases. Journal of Digestive Diseases 12(1): 17-24.

Zawie, D.A. & Garvey, M.S. 1984. Feline hepatic disease. The Veterinary Clinics of North America. Small Animal Practice 14(6): 1201-1230.

 

*Pengarang untuk surat-menyurat; email: mokrish@upm.edu.my