Sains Malaysiana 51(7)(2022):
2097-2107
http://doi.org/10.17576/jsm-2022-5107-13
DFT and CBS Study of Ethyl Acetate
Conformers in the Neutral Hydrolysis
(Kajian DFT dan CBS terhadap Konformer
Etil Asetat dalam Hidrolisis Neutral)
VERA
KHOIRUNISA1,2, FEBDIAN RUSYDI3,4*, ROICHATUL MADINAH4,5, HERMAWAN
KRESNO DIPOJONO1, FAOZAN AHMAD6, MUDASIR7, IRA
PUSPITASARI4,8 & AZIZAN AHMAD5
1Department of Engineering Physics, Faculty
of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha no. 10,
Bandung 40132, Indonesia
2Engineering Physics Study Program Institut Teknologi Sumatera, Jl. Terusan Ryacudu Lampung Selatan 35365, Indonesia
3Department of Physics, Faculty of Science
and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
4Research Center for Quantum Engineering
Design, Faculty of Science and Technology Universitas Airlangga, Jl. Mulyorejo,
Surabaya 60115, Indonesia
5Department of Chemical Sciences, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
6Department of Physics, Faculty of
Mathematics and Science, Institut Pertanian Bogor, Bogor 16680, Indonesia
7Department of Chemistry, Faculty of
Mathematics and Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
8Information System Study Program, Faculty
of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya
60115, Indonesia
Diserahkan: 28 Ogos 2021/ Diterima:
12 Januari 2022
Abstract
First-principles
calculations are commonly used to search for possible transition states in
reaction kinetics studies, which are such a challenge to observe
experimentally. However, computationally studying the reaction is also
challenging because of, inter alia, the Basis Set Incompleteness Error (BSIE).
Accordingly, we utilized density functional theory-based calculations and the
complete basis set method, to confirm the conformational effect in the neutral
hydrolysis of three ethyl acetate analogs: ethyl formate, ethyl acetate, and
ethyl fluoroacetate. The results showed that both methods yielded activation
energy span, which implies that the conformational effect in the ethyl acetate
neutral hydrolysis is not due to the BSIE. The results also demonstrated the
importance of polarization and diffuse function in a basis set. The former was
to improve the ground state geometry, and the latter was to increase the
activation energy.
Keywords:
Complete basis set; conformational effect; density functional theory; energy; neutral
hydrolysis
Abstrak
Pengiraan
prinsip pertama biasanya digunakan untuk mencari kemungkinan keadaan peralihan
dalam kajian kinetik tindak balas, yang merupakan satu cabaran untuk
diperhatikan secara uji kaji. Walau bagaimanapun, mengkaji reaksi secara
komputasi juga mencabar kerana antara lain Set Asas Ketaklengkapan Ralat
(BSIE). Oleh kerana itu, kami melakukan pengiraan berdasarkan teori fungsi
ketumpatan dan set asas lengkap, untuk mengesahkan kesan konformasi pada
hidrolisis netral tiga analog etil asetat: etil format, etil asetat dan etil
fluoroasetat. Hasil kajian menunjukkan bahawa kedua-dua kaedah menghasilkan rentang
tenaga pengaktifan, yang menunjukkan bahawa kesan konformasi dalam hidrolisis
netral etil asetat bukan disebabkan oleh BSIE. Hasilnya juga menunjukkan pentingnya
fungsi polarisasi dan difusi dalam set asas dengan teori fungsi ketumpatan untuk
mendapatkan geometri keadaan asas yang lebih tepat dan set asas lengkap untuk
meningkatkan tenaga pengaktifan.
Kata
kunci: Hidrolisis neutral; kesan konformasi; set asas lengkap; tenaga; teori
fungsi ketumpatan
RUJUKAN
Angel,
V., Luis, C.V.P., Olalla, N.F. & Carlos, S.L. 2019. On the use of popular
basis sets: Impact of the intramolecular basis set superposition error. Molecules 24: 3810.
Arlo,
M. & Herschel, H. 1959. Solvent and chain length effects in the
non-catalyzed hydrolysis of some alkyl and aryl trifluoroacetates. Journal
of the American Chemical Society 81: 2082-2086.
Cameron,
D.S. & Amir, K. 2019. Kinetics and thermodynamics of reactions involving criegee
intermediates: An assessment of density functional theory and ab initio methods through comparison
with CCSDT(Q)/CBS data. Journal of Computational Chemistry 41: 328-339.
Erkki,
K.E. & Nils, J.C. 1963. Kinetics of the neutral hydrolysis of chloromethyl
chloroacetate. Acta Chemica Scandinavica 17: 1584-1594.
Ernest,
L.E. 1953. The origin of steric hindrance in cyclohexane derivatives. Experientia 9: 91-93.
Febdian,
R., Roichatul, M., Ira, P., Wun, F.M., Azizan, A. & Andrivo, R. 2021.
Teaching reaction kinetics through isomerization cases with the basis of
density-functional calculation. Biochemistry and Molecular Biology Education 49: 216-227.
Febdian,
R., Nufida, D.A., Rizka, N.F., Hermawan, K.D., Faozan, A., Mudasir, Ira, P.
& Andrivo, R. 2019. The transition state conformational effect on the
activation energy of ethyl acetate neutral hydrolysis. Heliyon 5:
e02409.
Fei,
Z., Yang, W., Mingyuan, Z. & Lihua, K. 2015. C-doped boron nitride
fullerene as a novel catalyst for acetylene hydrochlorination: A DFT study. RSC Advances 5: 56348-56355.
Francis,
A.C. & Richard, J.S. 2007. Advanced Organic Chemistry. Part A: Structure
and Mechanisms. New York: Springer.
Frisch,
M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman,
J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H.,
Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G.,
Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J.,
Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T.,
Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J.,
Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J.,
Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi,
M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V.,
Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin,
A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K.,
Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S.,
Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. &
Fox, D.J. 2010. Gaussian 09, Revision B.01. Wallingford: Gaussian Inc.
Hossein,
T., Mohammad, A.R. & Amir, M. 2019. DFT study on the mechanistic details of
the hydrolysis of dicyan using acetaldehyde as the first organocatalyst. Computational
and Theoretical Chemistry 1154: 37-43.
Hui,
Z., Yan, S., Hong, Z., Xuan, W., Han, B. & Zesheng, L. 2019. Further
discussion on the reaction behaviour of triallyl isocyanurate in the UV
radiation cross-linking process of polyethylene: A theoretical study. Royal
Society Open Science 6: 182196.
Hussein,
A.A., Al-Hadedi, A.A.M., Mahrath, A.J., Moustafa, G.A.I., Almalki, F.A.,
Alqahtani, A., Shityakov, S. & Algazally, M.E. 2020. Mechanistic
investigations on pinnick oxidation: A density functional theory study. Royal
Society Open Science 7: 191568.
Jae,
S.L. & Young, C.P. 2014. Stability and interconversion of acetylcholine
conformers. Bulletin of the Korean Chemical Society 35(10): 2911-2916.
Johannes,
K., Peter, B. & Ulrich, S. 2016. Assessment of different basis sets and DFT
functionals for the calculation of structural parameters, vibrational modes and
ligand binding energies of Zr4O2(carboxylate)12 clusters. Computational and
Theoretical Chemistry 22: 127-135.
Johannes,
Z., Helmut, H., Joseph, D.S. & Miroslaw, C. 1997. Selectivity of lipases:
Con- formational analysis of suggested intermediates in ester hydrolysis of
chiral primary and secondary alcohols. Journal of Molecular Catalysis B:
Enzymatic 3: 83-98.
John,
R. & William, J.G. 1934. Researches in the menthone series. Part XIII. The
relative molecular configurations of the menthols and menthylamines. Journal
of the Chemical Society 1934: 1779-1783.
Joseph,
W.O., Petersson, G.A. & Montgomery, J.A. 1996. A complete basis set model
chemistry. V. Extensions to six or more heavy atoms. Journal of Chemical
Physics 104: 2598.
Juan,
R.A. & Annia, G. 2010. Counterpoise corrected interaction energies are not
systematically better than uncorrected ones: Comparison with CCSD(T) CBS
extrapolated values. Theoretical Chemistry Accounts 126: 75-85.
Kuchitsu,
K. 1998. Structure of Free Polyatomic Molecules: (Basic) Data. 1st ed.
Berlin: Springer-Verlag Berlin Heidelberg.
Nadezhda,
R.K., Vladimir, F.M., Dmitry, B.K., Ekaterina, V.M. & Oleg, I.G. 2016.
Synthesis, crystal structure and hydrolysis of novel isomeric cage
(p{c/p{o)-phosphoranes on the basis of
4,4,5,5-tetramethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphospholane and
hexafluoroacetone. RSC Advances 6: 85745-85755.
Nina,
N.C., Nataliya, F.L., Larisa, P.O., Igor, M.L. & Bagrat, A.S. 2015. The
hydrolysis of (o{si)-chelate [n-(acetamido)methyl] dimethylchlorosilanes. DFT
and MP2 study, QTAIM and NBO analysis. Computational and Theoretical
Chemistry 1070: 162-173.
Petersson,
G.A., Andrew, B., Thomas, G.T., Mohammad, A.A. & William, A.S. 1988. A
complete basis set model chemistry. I. The total energies of closed-shell atoms
and hydrides of the first-row elements. The Journal of Chemical Physics 89: 2193-2218.
Deslongchamps,
P. 1975. The importance of conformation of the tetrahedral intermediate in the
hydrolysis of esters and amides. In Organic Syntheses, edited by
Bruylants, A., Ghosez, L. & Viehe, H.G. Oxford: Butterworth-Heinemann. pp. 351-378.
Pierre,
H. & Walter, K. 1964. Inhomogeneous electron. Physical Review 136:
B864-B871.
Radhakrishnamurti,
P.S. & Prakash, C.P. 1970. Conformational studies in ester hydrolysis. Proceedings
of the Indian Academy of Sciences Section A 71: 181-188.
Rincón,
D.A., D.S. Cordeiro, M.N. & Mosquera, R.A. 2016. On the effects of the
basis set superposition error on the change of QTAIM charges in adduct formation.
Application to complexes between morphine and cocaine and their main
metabolites. RSC Advances 6: 110642-110655.
Rizka,
N.F., Febdian, R., Nufida, D.A., Vera, K., Hermawan, K.D., Faozan, A., Mudasir,
& Ira, P. 2020. A density functional study of the preference of
acetylcholine in the neutral hydrolysis. Molecules 25: 670.
Roman,
M.B. 2010. Communications: Intramolecular basis set superposition error as a
measure of basis set incompleteness: Can one reach the basis set limit without
extrapolation? The Journal of Physical Chemistry 132: 211103.
Santanu,
M., Shree, S.V.S. & Raghavan, B.S.
2018. A quantification scheme for non-covalent interactions in the
enantio-controlling transition states in asymmetric catalysis. Organic &
Biomolecular Chemistry 16: 5643-5652.
Simone,
G., Giovanna, L., Sergio, A., Stefan, E.B. & David, A.L. 2019. Bilirubin
and its congeners: Conformational analysis and chirality from metadynamics and
related computational methods. Monatshefte für Chemie - Chemical Monthly 150: 801-812.
Takeshi,
Y., David, P.T. & Nicholas, C.H. 2004. A new hybrid exchange–correlation
functional using the coulomb-attenuating method (cam- b3lyp). Chemical
Physics Letter 393: 51-57.
Toby,
T., Qingfeng, P., Luke, S., Ian, C., Wenhui, Z., Xiaocong, W., Robert, J.W.
& Anthony, S.S. 2017. O-acetyl side-chains in monosaccharides: Redundant
nmr spin- couplings and statistical models for acetate ester conformational
analysis. Journal of Physical Chemistry B 121: 66-77.
Venkatasubban,
K.S., Kenneth, R.D. & John, L.H. 1978. Transition-state structure for the
neutral water-catalyzed hydrolysis of ethyl trifluorothiolacetate. Journal
of the American Chemical Society 78: 6125-6128.
Venkatesan,
V., Polke, B.G. & Sikder, A.K. 2012. Ab initio study on the
intermolecular interactions between 1,1-diamino-2,2-dinitroethylene and
acetylene: Pull effect on complex formation. Computational and Theoretical
Chemistry 995: 49-54.
Vladimir,
K. & Nediljko, B. 2018. Hydrolysis, polarity, and conformational impact of C
terminal partially fluorinated ethyl esters in peptide models. Beilstein
Journal of Organic Chemistry 13: 2452-2457.
Walter,
K. & Lu, J.S. 1965. Self-consistent equations including exchange and
correlation effects. Physical Reviews 140: A1133-A1138.
Weck,
C., Nauha, E. & Gruber, T. 2019. Does the exception prove the rule? A
comparative study of supramolecular synthons in a series of lactam esters. Crystal
Growth & Design 19: 2899-2911.
William,
M.H. 2015. CRC Handbook of Chemistry and Physics. Florida: CRC Press.
pp. 1-2677.
Yan,
Z. & Donald, G.T. 2008. The M06 suite of density functionals for main group
thermochemistry, thermochemical kinetics, noncovalent interactions, excited
states, and transition elements: two new functionals and systematic testing of
four M06-class functionals and 12 other functionals. Theoretical Chemistry
Accounts 120: 215-241.
Young,
D.C. 2001. Computational Chemistry: A Practical Guide for Applying
Techniques to Real-World Problems. New York: Wiley. pp. 1-398.
Yuan,
L., Jijun, Z., Fengyu, L. & Zhongfang, C. 2013. Appropriate description of
intermolecular interactions in the methane hydrates: An assessment of DFT
methods. Journal of Computational Chemistry 34: 121-131.
*Pengarang untuk surat-menyurat; email: rusydi@fst.unair.ac.id
|