Sains Malaysiana 51(7)(2022): 2211-2222

http://doi.org/10.17576/jsm-2022-5107-22

 

Streamflow Data Analysis for Flood Detection using Persistent Homology

(Analisis Data Aliran Sungai bagi Pengesanan Banjir menggunakan Homologi Gigih)

 

SYED MOHAMAD SADIQ SYED MUSA*, MOHD SALMI MD NOORANI, FATIMAH ABDUL RAZAK, MUNIRA ISMAIL & MOHD ALMIE ALIAS

 

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 20 Mei 2021/Diterima: 1 Disember 2021

 

Abstract

Flooding is an environmental hazard that occurs almost everywhere around the world. Analysis of streamflow data can give us important climatic information for flooding events. Persistent homology (PH), a new analysis tool in topological data analysis (TDA) offers a new way to look at the information in a data set using qualitative approach. PH uses topology to extract topological features such as connected components and cycles that exist in the data set. In this paper, we present a new approach for streamflow data analysis for flood detection by using PH. An analysis was conducted at Sungai Kelantan, Malaysia. The result shows that PH gives different pattern of topological features for dry and wet periods. In particular, there are more persistent topological features in the form of connected components and cycles in the wet periods compared to the dry periods. We observed that the time series of the distance measure corresponding to the evolution of the components is consistent with the time series of the streamflow data. As a conclusion, this study suggests that the time series of the distance measure corresponding to the evolution of the components can be used for flood detection at Sungai Kelantan, Malaysia.

 

Keywords: Flood; persistent homology; streamflow; time delay embedding; topological data analysis

 

Abstrak

Banjir merupakan bencana alam yang berlaku hampir di seluruh dunia. Analisis data aliran sungai mampu memberikan maklumat iklim yang penting bagi kejadian banjir. Homologi gigih (HG), suatu alat analisis baharu dalam bidang analisis data bertopologi (ADB) menawarkan pendekatan baharu bagi mendapatkan maklumat dalam suatu set data menggunakan pendekatan kualitatif. HG menggunakan konsep topologi untuk mendapatkan maklumat berkaitan ciri topologi seperti komponen berkait, lubang dan lompong yang hadir dalam set data tersebut. Kajian ini membentangkan pendekatan baharu bagi analisis data aliran sungai bagi pengesanan banjir menggunakan kaedah HG. Suatu analisis telah dijalankan di Sungai Kelantan, Malaysia. Hasil kajian menunjukkan bahawa HG memberikan corak ciri-ciri topologi data aliran sungai yang berbeza bagi musim kering dan banjir. Secara khususnya, terdapat lebih banyak ciri topologi yang gigih dalam bentuk komponen berkait and lubang pada data musim banjir berbanding musim kering. Hasil kajian juga menunjukkan bahawa data siri masa ukuran jarak berkaitan perubahan komponen berkait adalah konsisten dengan data siri masa aliran sungai. Kesimpulannya, kajian ini mencadangkan data siri masa ukuran jarak berkaitan perubahan komponen berkait boleh digunakan sebagai ukuran bagi pengesanan banjir di Sungai Kelantan, Malaysia.

 

Kata kunci: Analisis data bertopologi; arus sungai; banjir; homologi gigih; pembenaman masa penangguhan

 

RUJUKAN

Adnan, N.A. 2010. Quantifying the impacts of climate and land use changes on the hydrological response of a monsoonal catchment. Dissertation, University of Southampton, Southampton, England (Unpublished).

Adenan, N.H. & Noorani, M.S.M. 2016. Multiple time-scales nonlinear prediction of river flow using chaos approach. Jurnal Teknologi 78(7): 1-7.

Alias, N.E., Mohamad, H., Chin, W.Y. & Yusop, Z. 2016. Rainfall analysis of the Kelantan big yellow flood 2014. Jurnal Teknologi 78(9-4): 83-90.

Awadalla, S. & Noor, I.M. 1991. Induced climate change on surface runoff in Kelantan Malaysia. International Journal of Water Resources Development 7(1): 53-59.

Belmar, O., Velasco, J. & Martinez-Capel, F. 2011. Hydrological classification of natural flow regimes to support environmental flow assessments in the intensively regulated Mediterranean rivers, Segura river basin (Spain). Environmental Management 47(5): 992-1004.

Carlsson, G. 2009. Topology and data. Bulletin of the American Mathematical Society (N.S) 46(2): 255-308.

Chan, N.W. & Parker, D.J. 1996. Response to dynamic flood hazard factors in Peninsular Malaysia. The Geographical Journal 162(3): 313-325.

Chang, H. 2007. Comparative streamflow characteristics for urbanizing basins in the Portland metropolitan area, Oregon, USA. Hydrological Processes 21(2): 211-222.

Chebana, F., Dabo-Niang, S. & Ouarda, T.B.M.J. 2012. Exploratory functional flood frequency analysis and outlier detection. Water Resources Research 48(4): W04514.

Cohen-Steiner, D., Edelsbrunner, H. & Harer, J. 2007. Stability of persistence diagrams. Discrete and Computational Geometry 37(1): 103-120.

Drainage and Irrigation Department (DID). 2010. Updating of Condition of Flooding and Flood Damage Assessment in Malaysia: State Report for Kelantan. Unpublished report. Kuala Lumpur: DID.

Edelsbrunner, H. & Harer, J. 2010. Computational Topology: An Introduction. Applied Math Textbook.

Faizah, C.R. 2015. Study on early forecasting of flood through historical hydrologic data analysis and numerical simulation in Kelantan Watershed, Malaysia. Dissertation, University of Tokyo, Tokyo, Japan (Unpublished).

Fasy, B.T., Kim, J., Lecci, F., Maria, C. & Rouvreau, V. 2021. Statistical Tools for the Topological Data Analysis.https://cran.r-project.org/web/packages/TDA/TDA.pdf.

Fuwape, I.A., Ogunjo, S.T., Oluyamo, S.S. & Rabiu, A.B. 2016. Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theoretical and Applied Climatology 130(1-2): 119-132.

Ghrist, R. 2008. Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society (N.S.) 45(1): 61-75.

Gidea, M. & Katz, Y. 2018. Topological data analysis of financial time series: Landscapes of crashes. Physica A: Statistical Mechanics and its Applications 491: 820-834.

Hamid, N.Z. & Noorani, M.S.M. 2017. Aplikasi model baharu penambahbaikan pendekatan kalut ke atas peramalan siri masa kepekatan ozon. Sains Malaysiana 46(8): 1333-1339.

Hannah, D.M., Smith, B.P.G., Gurnell, A.M. & McGregor, G.R. 2000. An approach to hydrograph classification. Hydrological Processes 14(2): 317-338.

Jonkman, S.N. & Kelman, I. 2005. An analysis of the causes and circumstances of flood disaster deaths. Disasters 29(1): 75-97.

Khushboo, M. & Shalabh, G. 2017. Topological characterization and early detection of burifications and chaos in complex system using persistent homology. Chaos: An Interdisciplinary Journal of Nonlinear Science 27(5): 051102.

Modaresi, F., Araghinejad, S. & Ebrahimi, K. 2018. Selected model fusion: An approach for improving the accuracy of monthly streamflow forecasting. Journal of Hydroinformatics 20(4): 917-933.

Musa, S.M.S., Noorani, M.S.M., Razak, F.A., Ismail, M., Alias, M.A. & Hussain, S.I. 2020. Using persistent homology as preprocessing of early warning signals for critical transition in flood. Scientific Reports 11: 7234.

Musa, S.M.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias, M.A. 2019. Streamflow data analysis using persistent homology. AIP Conference Proceedings 2111(1): 020021.

Otter, N., Potter, M.A., Tillmann, U., Grindrod, P. & Harrington, H.A. 2017. A roadmap for the computation of persistent homology. EPJ Data Science 6: 17.

Pereira, C.M.M. & de Mello, R.F. 2015. Persistent homology for time series and spatial data clustering. Expert Systems with Applications 42(15-16): 6026-6038.

Suhaila, J. & Yusop, Z. 2016. Spatial and temporal variabilities of rainfall data using functional data analysis. Theoretical and Applied Climatology 129(1-2): 229-242.

Takens, F. 1981. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, edited by Rand, D. & Young, LS. Lecture Notes in Mathematics. Vol. 898, Springer, Berlin, Heildelberg, New York. pp. 336-381.

Zaim, W.N.A.B.W.M. & Hamid, N.Z. 2017. Peramalan bahan pencemar ozon (O3) di Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia mengikut monsun dengan menggunakan pendekatan kalut. Sains Malaysiana 46(12): 2523-2528.

Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias, M.A. 2020a. Cluster analysis of haze episodes based on topological features. Sustainability 12(10): 3985.

Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias, M.A. 2020b. Pendekatan baharu untuk mengelompok stesen pengawasan kualiti udara menggunakan homologi gigih. Sains Malaysiana 49(4): 963-970.

Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias, M.A. 2019. Topological characterization of haze episodes using persistent homology. Aerosol and Air Quality Research 19: 1614-1624.

 

*Pengarang untuk surat-menyurat; email: syedmohdsadiq1992@yahoo.com

 

 

 

     

sebelumnya